
ENHANCE THE UNDERSTANDING OF
WHOLE-GENOME EVOLUTION BY DESIGNING,

ACCELERATING AND PARALLELIZING
PHYLOGENETIC ALGORITHMS

A Dissertation
Presented to

The Academic Faculty

by

Zhaoming Yin

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computational Science and Engineering

Georgia Institute of Technology
May 2014

Copyright c© 2014 by Zhaoming Yin

ENHANCE THE UNDERSTANDING OF
WHOLE-GENOME EVOLUTION BY DESIGNING,

ACCELERATING AND PARALLELIZING
PHYLOGENETIC ALGORITHMS

Approved by:

Professor David A. Bader
School of Computational Sience and
Engineering
Georgia Institute of Technology

Professor Mark Borodovsky
School of Biology
Georgia Institute of Technology

Professor Srinvas Aluru
School of Computational Sience and
Engineering
Georgia Institute of Technology

Professor Jijun Tang
Deptartment of Computer Science and
Engineering
University of South Carolina

Professor Richard W. Vuduc
School of Computational Sience and
Engineering
Georgia Institute of Technology

Date Approved: 25 March 2014

To my parents,

Xiaoping Yin and Lanying Xiao,

Who can hear the voice of my heart, even from thousands of miles

away.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Prof. David A. Bader for his powerful support for

my study, research, and life of living. I would like to thank Prof. Jijun Tang for his

help guiding me in the direction of computational biology and genome rearrangement

problems. I would like to thank Prof. Steve W. Schaeffer for his careful assist in

criticizing on and revising my papers. I would like to thank Dr. Satish Nadathur and

Dr. Narayanan Sundaram in Intel labs for their hand-in-hand instruction to provide

me a profound understanding on graph analytics and code optimizations. I would like

to thank Dr. Seunghwa Kang for his insightful instruction to help me to initiate my

research work. I would like to thank the members of my committee for their extreme

patience in the face of numerous obstacles. I would like to thank Dr. Wei Xu, Xing

Liu, Dr. Oded Green, Piyush Sao, Mingfu Shao, and Jia Zhao for their feedback

on various aspects of this project. I would like to thank Xue Wu, who has spent a

whole year with me and help me conquer the odds in the extremely busy days of my

life. I would like to thank Dr. Xuan Shi, Jian Zhao, Mizan Rahman and Cong Hou,

as friends, they provided me as much help as they can to make the world I lived a

happier place. Last, but certainly not the least, I would like to thank those who gave

me a lot of brave to survive this hardship of PhD study.

iv

SUMMARY

The advent of new technology enhance the speed and reduce the cost for

sequencing biological data. Making biological sense of this genomic data is a big

challenge to the algorithm design as well as to the high performance computing so-

ciety. There are many problems in Bioinformatics, such as how new functional genes

arise, why genes are organized into chromosomes, how species are connected through

the evolutionary tree of life, or why arrangements are subject to change. Phylogenetic

analysis has became essential to research on the evolutionary tree of life. It can assist

us to track the history of species and the linkage between diverse genes or genomes

through millions of years.

One of the fundamentals for phylogenetic analysis is the computation of distances

between genomes. The distance computation can be generally divided into two cate-

gories based on the granularity of the input data. One with fine grained granularity

is on the gene level, which is generally rest on aligning nucleotide or amino acid

between two gene sequences to minimize the number of insertions/deletions among

them. Another is more coarse grained, which takes the rearrangement events of genes

into consisderation. Since there are much more complicated combinatorial patterns in

rearrangement events, the distance computation is still a hot topic as much belongs to

mathematics as to biology. For distance computation with input of two genomes con-

taining unequal gene contents (with insertions/deletions Indels and duplications), the

problem is especially difficult. In this thesis, we will discuss about our contributions

to both of these two distance methods.

The problem of finding the median of three genomes is the key process in building

v

the most parsimonious (MP) phylogenetic trees from genome rearrangement data.

When dealing with input genomes having the same gene content, the median problem

employing Double-Cut-and-Join (DCJ) distance is NP-hard and the best exact algo-

rithm is anchored in a branch-and-bound (BnB) search strategy to explore sub-graph

patterns in Multiple Break Point Graph (MBG). As the search space is prohibitively

large, it may take months if not years to finish when the genomes are distant. For

genomes with unequal contents, to the best of our knowledge, there is no algorithm

to be utilized for finding the median. In this thesis, we make our contributions to

the median computation in two aspects: 1) Algorithm engineering aspect, we harness

the power of streaming graph analytics methods to implement an exactDCJ median

algorithm which run as fast as the heuristic algorithm and is able to construct a

better phylogenetic tree. 2) Algorithmic aspect, we explore the way of leveraging

genetic algorithm to tackle with the median problem, which achieved good results on

synthetic data. In addition, we theoretically formulate the problem of finding me-

dian with input of genomes having unequal gene content, which leads to the design

and implementation of an efficient median algorithm build around Lin-Kernighan

heuristic.

Having the knowledge for the two fundamental issues of distance and median com-

putation. Inferring phylogeny (evolutionary history) of a set of given species is the

ultimate goal. For more than a decade, biologists and computer scientists have stud-

ied how to infer phylogeny by the measurement of genome rearrangement events

using gene order data. While evolution is not an inherently parsimonious process,

MP phylogenetic analysis has been supported by being widely applied to the phy-

logeny inference to study the evolutionary patterns of genome rearrangements events.

There are generally two problems with the MP phylogenetic aroused by genome re-

arrangement: One is, given a set of modern genomes, how to compute the topologies

of the according phylogenetic tree; Another is, given the topology of a model tree,

vi

how to infer the gene orders of the ancestor species. To assemble a MP phylogenetic

tree algorithm, there are multiple NP-hard problems involved. Unfortunately, these

problems are organized as one on top of others. Which means, to solve a NP-hard

problem, we need to solve multiple NP-hard sub-problems first. For phylogenetic tree

construction with the input of unequal content genomes, there are three layers of

NP-hard problems. In this thesis, we will mainly discuss about our contributions to

the design and implementation of the software package DCJUC (Phylogeny Inference

using DCJ model to cope with Unequal Content Genomes), which is able to assist

achieving both of these two goals.

Aside from the biological problems, another issue to be concerned is on how to utilize

the power of parallel computing to assist accelerating algorithms handling huge data

sets. For example, the high resolution gene order data. For one thing, most of

the algorithms we used in phylogenetic problems are grounded on branch-and-bound

method, which is quite irregular and unfriendly for parallel computing. To parallelize

these algorithms, we need to properly select way to boost localized memory access

and load balance, in hope that each thread can put their potentials into full play.

For another, there is a revolution taking place in computing with the availability of

commodity graphical processors such as Nvidia GPU and many-core CPUs such as

Cray-XMT, and Intel Xeon PhiTM co-processor. These architectures pave a new way

to uplift performance at much lower cost. However, code running on these machines

are not so easily programmed, and scientific computing is hard to tune well on them.

We try to explore the potentials of these architectures to help us accelerate BnB like

phylogenetic algorithms. As a result, a software package OPT-Kit (OPTimization

Tool-Kit for Prallellizing Discrete Combinatoric Problems in Emerging Platforms) is

designed and implemented on state of the art high performance architectures.

vii

Contents

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

SUMMARY . v

LIST OF TABLES . xi

LIST OF FIGURES . xii

I INTRODUCTION . 1

1.1 Biological Background . 1

1.2 Distance Computation between Species 3

1.3 Median Computation . 5

1.4 Phylogenetic Inference and Ancestor Genome Reconstruction 6

1.5 Supertree and Consensus Tree Problems 9

1.6 Ancestor Genome Reconstruction 10

1.7 Parallel Branch-and-Bound Methods 11

1.8 Emerging Parallel Computing Architectures 13

II DISTANCE COMPUTATION . 15

2.1 Using HMM based Method to Compute Distance using Gene Se-
quence Data . 15

2.1.1 Hidden Markov Model . 16

2.1.2 Viterbi Algorithm . 17

2.1.3 Biological Sequence Alignment Oriented Viterbi Algorithm . 18

2.2 Using Graph based Method to Compute Distance Using Gene Order
Data . 19

2.2.1 Preliminaries . 19

2.2.2 Using DCJ-Indel-Exemplar Distance to Evaluate Dissimilarity 21

2.2.3 Using DCJ-Indel-CD Distance to Evaluate Dissimilarity . . . 24

2.2.4 Experimental Results . 26

viii

III MEDIAN COMPUTATION . 31

3.1 Introduction to Genome Median Problem under DCJ Criteria 31

3.2 Using Streaming Breakpoint Graph Analysis Methods to Accelerate
the Median Computation . 35

3.2.1 Compressed Data Structures for Memory and I/O Efficiency 36

3.2.2 A Fast Method to Update Cycle/Path Numbers 37

3.2.3 Heuristics for Reducing Search Space 40

3.2.4 Experimental Results . 41

3.3 Using Genetic Algorithm to Solve Genome Median Problems 44

3.3.1 Distance Space . 45

3.3.2 Median Genome Reconstructor 45

3.3.3 Probability Based Method 46

3.3.4 Genetic Algorithm Design . 47

3.3.5 Experimental Results . 48

3.4 Using Lin-Kernighan Heuristic to Find DCJ Median with Genomes
of Unequal Contents . 50

3.4.1 Problem Statement . 50

3.4.2 Design of Lin-Kernighan Heuristic 51

3.4.3 Use of Adequate Sub-graphs to Simplify Problem Space . . . 52

3.4.4 Search Space Reduction Methods 52

3.4.5 Experimental Results . 55

IV PHYLOGENY COMPUTATION . 58

4.1 Phylogenetic Tree Topology Inference 58

4.2 Applying REC-DCM-Eigen Method to Tree Topology Inference . . . 60

4.3 Ancestor Gene Order Reconstruction 62

4.4 Experimental Results . 65

4.4.1 Applying Streaming Breakpoint Graph Analysis Methods on
Real Drosophila data for Phylogeny Inference 65

4.4.2 Phylogenetic Inference . 66

ix

4.4.3 Ancestor Order Reconstruction 67

4.4.4 Real Tree Construction Example 70

V USING EMERGING PARALLEL COMPUTING ARCHITECTURE
TO ACCELERATE PHYLOGENETIC ALGORITHMS 73

5.1 Using GPGPU to Accelerate HMM based Sequence Alignment Algo-
rithm . 73

5.1.1 Wave-front Pattern to Implement the Viterbi Algorithm . . . 74

5.1.2 Streaming Viterbi Algorithm for Biological Sequence Alignment 76

5.1.3 Tile Based Method to Harness the Power of GPU 77

5.1.4 Optimization Methods . 79

5.1.5 Experimental Results . 80

5.2 Parallelizing Branch and Bound Algorithms 87

5.2.1 Parallel Speedup for BnB DCJ median algorithm 87

5.2.2 Knowledge Learn from the Parallelization of ∆-Stepping Al-
gorithm . 88

5.2.3 Design A Bucket Processing Based Parallel BnB Algorithm . 90

5.2.4 Algorithm Analysis . 94

5.2.5 Design and Implementation of OPT-Kit 95

VI CONCLUSION AND FUTURE WORK 98

REFERENCES . 100

VITA . 115

x

List of Tables

1 The running time and search space for circular chromosomes 44

2 The experiment result for phylogenetic tree construction 65

3 Performance comparison of for different Viterbi implementations. In
the table, the first line of a group is the results for Debug-Windows
mode (DW), second line, Release Windows (RW), third line, Debug
Linux (DL), Fourth line, Release Linux (RL). 82

xi

List of Figures

1 Example of multiple sequence alignment. 1

2 Different genome rearrangement events. 2

3 Example of sequence data of 12 species drosophila [19, 127] 3

4 Example of yeast gene order data with duplicated genes marked with
the same color [50]. 4

5 Example of using neighbor joining method to build a phylogenetic tree. 7

6 Example of using BnB to search a maximum parsimonious tree. . . . 8

7 A typical HMM model built from a sequence profile, Match stands for
the match state of the ith profile column, as do Deleteti and Inserti.
There is a probability assigned to each state-transition of every col-
umn, which is represented by different type of line. For every match
state, there are emit probabilities for each of 20 amino acids in accor-
dance with that state. These probabilities are represented by different
lengths of bars. For delete and insert states, emit probabilities are the
background probabilities trained from massive amounts of data in the
real world. 16

8 Foundation of the biological sequence alignment oriented Viterbi al-
gorithm. The rectangle on the left represents the whole matrix to be
computed by the Viterbi algorithm, and the right side of the figure
shows the process of updating a single block of the matrix. 18

9 Example of breakpoint graph for gene order (1,-2,3,-6,5) which is a
genome Γ formed by one circular chromosome, the genome is repre-
sented by solid edges. And gene order (1,2,3,7,4) is a genome Π that
has one linear chromosome, the genome is represented by dashed edges. 20

10 DCJ operation on BPG, which selected two edges (one for each genome);
cut these two edges and rejoin them using two possible combinations
of end vertices. 20

11 An example of exemplar mapping from genome Γ (1, -2, 3, 2, -6, 5)
and genome Π (1, 2, 3, 7, 2, 4) to Γ (1, 3, 2, -6, 5) and genome Π (1,
3, 7, 2, 4). 22

12 An example of cycle decomposition results for a bijection from genome
Γ (1, -2, 3, 2, -6, 5) and genome Π (1, 2, 3, 7, 2, 4) to Γ (1, -2, 3, 2’,
-6, 5) and genome Π (1, 2’, 3, 7, 2, 4). 25

xii

13 Distance computation results, the x-axis represents the actual number
of DCJ operations and the y-axis represent the computed distance for
the methods using DCJ-indel-exemplar distance, DCJ-Indel-Exemplar
distance corrected by EDE, and the true estimator. 28

14 Distance computation results, the x-axis represents the actual number
of DCJ operations and the y-axis represent the computed distance
for the methods using DCJ-indel-CD distance, DCJ-indel-CD distance
corrected by EDE, and the true estimator. 29

15 Examples of Breakpoint Graphs. 32

16 Examples of operations on BPG. 32

17 Example of multiple breakpoint graph (MBG) for gene order (1,2,3)
which is represented by solid edges;(1,3,2) which is represented by
dashed edges;(1,-2,-3) which is represented by dotted edges. The branch
and bound (BnB) process for computing median genome is shown in
the figure. 34

18 Child node i, just need to store a pointer to f-a, and an edge (s, ti),
need O(1) storage. 36

19 Examples of different observations when only one 0-matching is shrunk. 39

20 Time complexity comparison for our streaming algorithm (-s) and the
original algorithm (-o). 42

21 Space complexity comparison for our streaming algorithm (-s) and the
original algorithm (-o). 43

22 Comparison of BnB method and CAR based method. 49

23 Comparison of different initialization methods in GA algorithm. . . . 49

24 Median computation results for γ = φ = 0% and θ varies from 10% to
100%. 54

25 Median computation results for γ = φ = 5% and θ varies from 10% to
60%. 55

26 Methods for conducting median experiments. 56

27 Median results for LK solver using DCJ-Indel-CD distance. 57

28 Example of using branch and bound for phylogenetic tree topology
inference. 59

29 Example of using consensus tree methods to merge subtrees. 61

xiii

30 Example of GAS initialization of internal ancestor genomes, genome
‘2’ is the one to be initialized, the perspective of 2 is all the nodes in
the BFS route start from 2, and the directive nodes of the perspective
are the nodes marked by gray color. In this example, the adjacencies
of gene 1 are shown of how they are chosen and how they are weighted. 64

31 Methods for conducting phylogeny inference experiments. 67

32 Results of tree topology construction accuracy, the x-axis is the number
of species and the y-axis is the accuracy. 68

33 Results for ancestor genome reconstruction. 69

34 Example of the visualization of the phylogenetic tree using DCJUC
with the input of a subset of yeast genome data. 70

35 The phylogenetic tree of 53 species yeast genome. In the figure, each
edge of the tree has three numbers, which are number of DCJ oper-
ations, number of insertion/deletion operations, and number of dupli-
cation operations. 72

36 Wave-front structure of Viterbi Algorithm for Biological Sequence Align-
ment. The left-hand side of the figure shows the wave-front process,
and right-hand side of the figure shows the memory data skewing to
implement the wave-front algorithm. For the detail of this method,
please refer to [6]. 75

37 Example of three functions in the simple wave-front implementation. 75

38 The HMM matrix is updated asynchronously at the host CPU and
GPU device. The solid and dashed arrows represent the asynchronous
execution between host CPU and GPU device. 76

39 Using homological segments to divide long sequences. 78

40 Example of finding homological segment pairs and using them to di-
vide a large matrix into smaller, independent tiles. In the left-hand
diagram, homological sequences form small pieces and are aligned us-
ing the Dynamic Programming method, and un-aligned homological
tiles are marked with an “X”. In the right-hand diagram, aligned tiles
are used to divide large matrix into small sub-matrices. 78

41 Thread load. The left side of this figure shows the wave-front Viterbi
Algorithm for Biological Sequence Alignment and right side shows how
the transformed formula can balance the thread load. 80

42 Results of the test on streaming Viterbi algorithm implementation for
Biological Sequence Alignment. 83

xiv

43 Results of testing the tile-based Viterbi Algorithm for Biological Se-
quence Alignment. Here we include only the time for computing sub
sequences . 85

44 Results of testing on longer sequences, upper graph shows the results
in Release mode and lower graph shows the results in Debug mode. . 86

45 Explanations of two different load balancing strategy. 87

46 Parallel speed up. 88

47 Results of the test on streaming Viterbi algorithm implementation for
Biological Sequence Alignment. 89

48 Results of the test on streaming Viterbi algorithm implementation for
Biological Sequence Alignment. 89

49 An example of using bucket based method to do parallel branch and
bound search. 94

50 Parallel speed up for knapsack problem and DCJ-Indel-CD distance
problem on Intel’s Sandy Bridge and MIC system. 97

xv

Chapter I

INTRODUCTION

1.1 Biological Background

A phylogenetic tree captures speciation events among multiple organisms. Construct-

ing a phylogenetic tree requires inferring ancestral relationship among multiple or-

ganisms based on currently available data. Traditionally, scientists had studied this

problem by inspecting fossils or comparing the morphology and the physiology of

living creatures, but these approaches revealed limitations due to an incomplete set

of fossils or the complex nature of evolutionary mechanisms affecting the morphology

and the physiology of organisms. The increasing availability of genetic data opens a

new opportunity to solve the problem. Constructing a phylogenetic tree by compar-

ing nucleotide sequences of a single gene or a few genes has been intensively studied.

With the advancement of the multiple sequence alignment technology, phylogenetic

trees can be constructed simultaneously with multiple sequence alignment (MSA).

An example of multiple sequence alignment is shown in Figure 1

Figure 1: Example of multiple sequence alignment.

1

Nonetheless, the content of the DNA molecules is often similar, but their organiza-

tion usually differs dramatically. As a consequence, the multiple sequence alignment

method is limited by its appliance to only one or few genes but not to the whole pic-

ture of the genome. Mutations that affect the organization of genes are called genome

rearrangements, the phylogenetic tree construction employing genome rearrangement

events is associated with numerous combinatorial optimization problems.

1 -2 3 4-5 -6 7

1 -2 5 -4 3 -6 7

reversal

1 -2 3 4 -5 -6 7

1 -2 3 4 -5 8 -9 -6 7

insertion

1 -2 3 4 -5 -6 7

1 -2 3 4 -5 4 -5 -6 7

tandem
duplication

1 -2 3 4-5 -6 7

1 -2 -6 7 3 4-5

transposition

1 -2 3 4 -5 -6 7

1 -2 -5 -6 7

deletion

1 -2 3 4 -5 -6 7

1 -2 3 4 -5 -6 7 3 4

transposed
duplication

insertion

(a) Intra genome rearrangement events

1 -2 3 4 -5 -6 7 8 -9 10 -11 -12 13 14

1 -2 3 4 -5 -6 7 8 -9 10 -11 -12 13 14

translocation

1 -2 3 4-5 -6 7 8 -9 10-11 -12 13 14

1 -2 3 4-5 -6 78 -9 10-11 -12 13 14

fusion

1 -2 3 4-5 -6 7 8 -9 10-11 -12 13 14

1 -2 3 4-5 -6 78 -9 10-11 -12 13 14

fission

(b) Inter genome rearrangement
events

Figure 2: Different genome rearrangement events.

The genome of a taxa, is consisted of multiple chromosomes. For example, the human

being’s genome is consisted of 23 chromosomes, and each chromosome is consisted of

multiple genes. If two genes (possibly located in chromosomes of different species)

are originated from a common ancestral gene, then the two genes are homologous.

If a unique number is assigned to a set of homologous genes, a chromosome can

be represented as a sequence of numbers; numbers appear in the order the genes

corresponding to the numbers appear in a chromosome. If a genome has multiple

chromosomes, we can represent the genome with multiple sequences of numbers-one

sequence per chromosome. Such sequences of numbers are gene order data. There are

various kinds of operations that is included in the genome rearrangement events which

can roughly be divided into two classes: Intra-chromosomal genome rearrangement

2

events, and Inter-chromosomal genome rearrangement events. Figure 2 shows the

examples for rearrangement events in multiform.

(a) Example of drosophilla gene content (b) Example of drosophilla phylogenetic
tree

Figure 3: Example of sequence data of 12 species drosophila [19, 127]

Though genome rearrangement events are comparatively rare in evolutionary his-

tory, through millions of years aggregation, it is an ineligible factor for distinguishing

species. For example, in Fig 3(a), the genome content for 12 species drosophilla is

displayed. We can see that there are very obvious changes in their gene contents.

Build from their gene order data, the phylogenetic tree for the 12 species drosophilla

is shown in Fig 3(b). Another point of view is, gene duplication events are also very

widely occurred. Fig 4 shows an example of 55 species yeast genome. In the figure,

triangles with different color represents the orientation and type of different genes.

It’s easy to notice that there are a lot of duplications happened (triangles with the

same color in a single genome).

1.2 Distance Computation between Species

Biologist has spent over decades to develop methods on gene level sequence com-

parison, which is mainly focused on the research of multiple sequence alignment.

Notable softwares include Clustal-W, T-Coffee, Muscle, DiAlign, Satchmo, ProbCons,

3

Figure 4: Example of yeast gene order data with duplicated genes marked with the
same color [50].

Mafft, and Sam [44, 52, 138, 103, 158, 53, 54]. Although DNA sequence data is still

the dominant source, building phylogeny from higher-level changes such as genome

rearrangements has gained increasing attentions from the field. The distance calcu-

lation between two genes is the canonical longest common sequence problem (LCS).

There are multiple approaches to solve this problem. Such as the dot-mat method

[63], dynamic programming method [72, 41], probability based method [47, 46] and

various of heuristics [78, 137]. These algorithms usually has regular computational

patterns. However, with the advancement of high throughput sequencing technology,

more and more sequence data becomes available to be processed. How to handle this

huge amount of data with sequence alignment technologies becomes a challenging

4

problem.

There are many distance metrics to calculate the dissimilarity between two genomes

[21, 14]. Among them, Double-cut-and-join (DCJ) distance [150] is currently the most

widely used in the research of rearrangement distance modeling. It can abstract the

rearrangement operations of reversal, translocation, fusion, and fission, with the ad-

ditional merits that the model can be easily applied to multi-chromosomes. All these

distance metrics have the same assumption that two input genome contains the same

number of genes and every gene has exact one copy in each genome. This assumption

limits the true modeling of genome evolution, because gene insertions/deletions (In-

del) and duplications are widely spreaded events in different species. Computational

biologists tried multiple ways to surpass this limit, such as the effort of using exem-

plar distance [123, 104] to measure the difference of two genomes with duplications

happened. Very useful attempt is tried to compute the approximate and exact DCJ

distance with duplications [129, 98]. And for genomes with Indels, there is exact

algorithm to compute their DCJ distance [37]. However, there is no way to measure

distance of genomes with gene orders that contain both Indels and duplications.

1.3 Median Computation

The question of finding median of three genomes rooted on genome rearrangement,

is the building block for constructing a phylogenetic tree under maximum parsimony

criteria [100, 22]. Given three genomes, it inquires a “median” genome which has

the minimum accumulate genome rearrangement operations (distance) between these

three genomes. There are different methods to solve the median problem using differ-

ent measurement of distance metrics, such as break-point [112], reversal [30], translo-

cation [16] and double-cut-and-join(DCJ) [150]. The DCJ median problem is proved

NP-hard and APX-hard [136] and several exact algorithms have been implemented to

5

solve the DCJ median problems on both circular [146, 143] and linear chromosomes

[142, 145]. Some heuristics are introduced to improve the speed of median compu-

tation, such as the linear programming (LP) [30]; local search [49, 87]; evolutionary

programming [62, 49]; or simply searching on one promising direction [118]. All these

algorithms are intended for solving the median problems with equal content, which

is highly unrealistic in practice.

1.4 Phylogenetic Inference and Ancestor Genome Recon-
struction

There are several representative approaches for constructing phylogenetic trees. The

distance based method is a polynomial time approach, typical algorithms includes

Neighbor joining (NJ) and UPGMA [122, 132], they are essentially hierarchical clus-

tering employing different method to guide the merging process. Maximum parsimony

(MP) methods find a topology with the minimum number of mutations (or the low-

est parsimony score), and maximum likelihood (ML) methods attempt to find a tree

with the highest likelihood value under a certain evolutionary model. MP and ML

methods are generally more accurate than the distance oriented method but also

more computationally expensive. These methods, using nucleotide sequence data,

find a reasonably accurate tree topology for close genomes. For distant genomes,

these methods become significantly less accurate due to the high rate of nucleotide

sequence level mutations.

NJ method is one of the most widely applied phylogenetic tree tool. It takes as input

a distance matrix specifying the distance between each pair of taxa. The algorithm

starts with a completely unresolved tree, whose topology corresponds to that of a star

network, and iterates over the steps that trying to join the sub-tree and recompute

the distance matrix until the tree is completely resolved and all branch lengths are

6

Figure 5: Example of using neighbor joining method to build a phylogenetic tree.

known. In addition, neighbor-joining method also serves as the indicator to estimate

how easy a data set can be infered for phylogenetic purposes. Because in general,

when neighbor-joining method performs well, other methods can perform good as

well, and vise versa. Figure 5 shows an example of using neighbor joining method to

construct a phylogenetic tree.

The principle of MP is to choose one tree which entails the smallest amount of evolu-

tionary change. The MP criterion favors hypotheses that maximize congruence and

minimize homoplasy. In the sequence based phylogeny, in which taxa are represented

by aligned sequences,parsimony criteria are classified into Fitch Parsimony, Wagner

Parsimony, Dollo Parsimony and Generalized Parsimony (Sankoff Parsimony). Sev-

eral algorithms of the heuristic search for MP trees are available, however, to get

the exact optimal, branch-and-bound (BnB) algorithm is used. See Figure 6 for an

example of using BnB method to infer a phylogenetic tree. The expansion of active

nodes in the BnB search of phylogeny is stepwise addition, trying to insert the next

taxon into arbitrary branches of an incomplete tree. Many researchers have been

7

B
A

C

B
A

C

B

A

C

D

D

B

A

D
C

STOP

B

A

D
C

B

A

D

C

B

A

D
C

B

A

C
D

B
A

C
D B

A

C

D
STOP

STOP

STOP

STOP

E

E

B

A

E
C

D

E

B

A

C
E

D

E

E

E

B
A

C

E
STOP

D

B

A

CD

E

STOP

STOP

Figure 6: Example of using BnB to search a maximum parsimonious tree.

working on different tree search strategies to escape local optima or prune branches

more quickly. On the other hand, because parsimony problems require evaluating

enormous number of trees, rapid evaluation of a candidate tree generated by stepwise

addition or branch swapping is a crucial factor to the performance of a parsimony

program as well.

The maximum likelihood method to construct a phylogenetic tree is a probability

driven method. It can be formulated as the problem of finding θ which maximize the

likelihood of L(I|θ). Of which I represents the input of different species with some

specific encoding, such as sequence data of nucleic acid, protein, or gene sequences.

Recent research on ML method targeting at genome rearrangement events can be

found at [134, 88] , they can cope with genome sequences with very high resolution

and deal with very large data sets.

8

1.5 Supertree and Consensus Tree Problems

There are in general two approaches to tackle with the phylogeny topology inference

problem. One is based on exhaustive search that select the best tree by enumerating

every possible tree, another is a heuristic method using sequential addition that builds

the tree by adding species one by one. The exhaustive approach can usually find

better tree than heuristic approach at the cost of much more computational time.

And the Disk-Covering Method (DCM) [74, 80], provide a divide-and-conquer way

to assemble the sub-trees which are inferred by exhaustive approach into one tree,

with little loss of accuracy. There are three versions of DCMs [75, 77, 121]. The first

DCM (DCM1) was designed for use with distance-based methods and has provable

theoretical guarantees about the sequence length required to reconstruct the true tree

with high probability under Markov models. It produces good sub-problems (small

enough in size), but the structure induced by the decomposition is often poor. The

second DCM (DCM2) was designed to speed up heuristic searches for MP trees. It

computes a fixed structure (a graph separator) to overcome DCM1 ’s drawback, but

the resulting sub-problems tend to be too large. An both of DCM1 and DCM2 used

only one distance matrix for parition. DCM3 overcome their problems by using a

dynamically updated guide tree and do the computation with iterative and recursive

manner. DCM3 tend to produce good tree with one order of magnitude more number

of species. Since all these DCM methods are designed for sequence alignment based

phylogenetic tree construction. They do not adapt well to the genome rearrangement

based phylogenetic tree construction. A spectral partition based method is introduced

to improve the existing DCM method [80]. In synthetic analysis, it out performs all

of the DCM methods.

9

1.6 Ancestor Genome Reconstruction

As for the ancestor genome reconstruction problem, once the tree topology is fixed,

there are multiple ways to reconstruct the ancestry gene orders which can be gen-

erally divided into two categories. One is based on heuristics that tries to recover

all common child adjacencies, and for the uncommon ones, recover the one that is

more likely to be present in the parent genome. [91] introduced the method for re-

constructing contiguous regions of an ancestral genome. We can see this process as a

way to infer the “median” genome of two given genomes. Given a phylogenetic tree, it

constructs the genome sequences of the ancestral species from modern species. They

also designed an algorithm named DUPCAR [93] to help reconstruct contiguous an-

cestral regions (CAR) with duplications which contains a sub-routine of gene tree

reconciliation [85, 135]. However, Ma’s method requires the input of phylogenetic

tree and gene tree, which is not feasible if we want to “build” a phylogenetic tree

from the scratch. And usually, this method is not capable of finding the mathemat-

ically optimized median genome. Another category is more mathematical sound, it

tries to recover the ancestor genome by finding the median genome of three given

genomes. The method is a two step process to iteratively improve the median results

for each ancestor genome. The first step is the initialization step that initiate the

internal nodes in the model tree. The second step is the refinement step that tries to

improve the results, if one of the three neighbors’ genome is changed, the algorithm

will update the genome to see if it improves or not. The initialization step is critical

for the quality of the final ancestor genome reconstruction.

10

1.7 Parallel Branch-and-Bound Methods

Branch-and-bound method is one of the most well know method to get the exact

solution for the NP-hard optimization problems. It’s basically originated from a tree

search approach. There are different search strategies for BnB, such as depth-first-

search (DFS) and best-first-search (A*), A* has the advantage over DFS for it can

ensure to have the minimum search space. In [154], the number of search nodes

expanded by DFS is no more than O(dN), where d is the tree depth and N is the

expected number of nodes expanded by A*. However, DFS only use O(d) of space

(d is the depth of the search tree), while the space A* used is usually way more than

that, even though there are some memory saving technologies such as frontier search

[84] or Delayed Duplicate Detection [83]. Though there are methods that combine

the idea of A* and DFS, such as iterative deepening [82] or recursive best-first-search

[155], they usually do not perform better than DFS or A* in practice.

There are many frameworks that enable people who has background in optimization

area to write parallel BnB programs to solve optimization problems such as: PEB-

BLE [115] and PICO [51], they are written in C++ language and distributed memory

system, they can help developers to design different kind of BnB algorithms with rel-

atively less effort. ALPS [147] , which is designed for distributed memory system, and

adopted many traditional strategies for parallel BnB algorithms. It can support A*

search, and use a knowledge pool to share intermediate search nodes. However, this

method does not scale well, as the central node pool inevitably becomes a computa-

tional and communications bottleneck. DryadOpt [29] is also a distributed memory

framework for designing parallel branch and bound algorithms, it is based on the big

data processing engine. The limit of this method is, it does not fully support A* algo-

rithm, therefore the knowledge sharing is just at the ramp up stage for every iteration.

And there is no dynamic load balancing in this method. BoB++ [43] can be used very

11

flexibly, which support many architectures like SMP and distributed memory systems,

it can also support different load balancing strategies including master-worker and

master-hub-worker. Nevertheless, it does not have a public available source for A*.

There are also old parallel packages for branch-and-bound algorithm such as PUBB

[130] and PPBB-lib [1], they are targeting at old architectures, which might not suit

today’s high performance parallel architecture.

BnB algorithm has in its nature parallelism, however, Performance of the parallel

BnB algorithm is highly dependent on different factors, such as storage of open sub

trees, choice of data structures, communication protocols, and choice of granularity

[12]. Since there are different parallel algorithms implemented in various hardware

architectures such as distributed memory system, grid architecture, and shared mem-

ory system [13]. Different techniques are used for these architectures, such as ramp

up and hub-worker strategies for the load balancing in distributed memory systems

[51],the master-worker paradigm which is well suited for the grid computing [64] and

the use of priority queue in the share memory system [12]. With the upcoming of

“Big Data” era, there are parallel BnB methods based on the distributed data-parallel

execution engine such as DryadOpt [29].

There is one type of the optimization problem that to solve these problems, it’s neces-

sary to solve a set of embedded NP-complete problems. For example, the verification

process is NP-complete. The time used to solve these problems is a constant raised

to the power of an exponential function, which has a general formula of f(x) = abx

and grows much more quickly than an exponential function. These problems are

called EXPTIME or NEXPTIME problems [69]. EXPTIME or NEXPTIME prob-

lems problems are widely spreaded across different domains. For example in the game

theory [61, 120, 119], computational biology [34, 100, 22]. However, there is no soft-

ware packages focused on these kind of problems. We think these problems will be a

12

big challenge in the next generation petascale or exascale computation. Because they

are involved with multiple memory management, layered scheduling, load balancing,

I/O problems.

1.8 Emerging Parallel Computing Architectures

Recent graphics architectures provide tremendous memory bandwidth and compu-

tational horsepower at a very inexpensive price compared with the same amount of

computing capability of traditional CPUs. Meanwhile, because of its design prin-

ciple for arithmetic intensity, the speed of graphics hardware is increasing quickly,

nearly doubling every six months. The stream programming model provides a com-

pelling solution for applications that require high arithmetic rates and data band-

widths. Compute Unified Device Architecture (CUDA) introduced by NVIDIA is

a programming environment for writing and running general-purpose applications

on the NVIDIA GPUs, such as GeForce, Quadro, and Tesla hardware architectures.

CUDA allows programmers to develop GPGPU applications using the extended C

programming language instead of graphics APIs. In CUDA, threads are organized

in a hierarchy of grids, blocks, and threads, which are executed in a SIMT (single-

instruction, multiple-thread) manner; threads are virtually mapped to an arbitrary

number of streaming multiprocessors (SMs). In CUDA, the wider memory is shared,

the slower it is accessed. Therefore, how to organize the memory access hierarchy in

the application is the golden rule for CUDA programmers.

Recently, Intel announced the Intel R© Xeon PhiTM Coprocessor, codenamed Knights

Corner (KNC), which is the first commercial release of the Intel R© Many Integrated

Core (Intel R© MIC) architecture. Unlike previous microprocessors from Intel, KNC

works on a PCIe card with GDDR5 memory and offers extremely high memory

bandwidth. The first model of KNC has 60 cores, featuring a new 512-bit SIMD

13

instruction set. With a clock speed in excess of 1 GHz, KNC has over 1 Tflops

double precision peak performance from a single chip.

14

Chapter II

DISTANCE COMPUTATION

2.1 Using HMM based Method to Compute Distance using
Gene Sequence Data

Biological Sequence alignment is very important in homology modeling, phylogenetic

tree reconstruction, sub-family classification, and identification of critical residues.

When aligning multiple sequences, the cost of computation and storage of traditional

dynamic programming algorithms becomes unacceptable on current computers. Many

heuristic algorithms for the multiple sequence alignment problem run in a reasonable

time with some loss of accuracy. However, with the growth of the volume of sequence

data, the heuristic algorithms are still very costly in performance.

The Hidden Markov Model (HMM) includes three canonical problems: evaluation,

decoding, and learning [9]. Typical sequence alignment approaches often involve the

last two problems. The learning problem [131, 26] often needs less time compared

with the decoding problem – Biological Sequence Alignment Oriented Viterbi Algo-

rithm [48]. Based on our experimental results on Satchmo [54] (a multiple sequence

alignment tool), the Viterbi algorithm occupies more than approximately 80% of the

total execution time. Therefore, it is critical to design an efficient method to speed

up the Viterbi algorithm.

15

Figure 7: A typical HMM model built from a sequence profile, Match stands for the
match state of the ith profile column, as do Deleteti and Inserti. There is a probability
assigned to each state-transition of every column, which is represented by different
type of line. For every match state, there are emit probabilities for each of 20 amino
acids in accordance with that state. These probabilities are represented by different
lengths of bars. For delete and insert states, emit probabilities are the background
probabilities trained from massive amounts of data in the real world.

2.1.1 Hidden Markov Model

An HMM is a quintuple; it can be described as follows:

HMM = {O, S, P (e), P (t), π} (1)

O stands for the set of observations; S stands for the set of states, P (e) stands for

the probability of emitting an observation for the given state, P (t) stands for the

probability of transferring from one state to another, and π stands for the probability

of an initial state. Figure 7 shows a typical hidden Markov model build on a sequence

profile of length 3 consisting 3 aligned sequences. In this Figure, 1) the observation

stands for the residue(s) in a specific column of a profile, which includes one or the

combination of 20 amino acid residues. 2) There are three possible states for each

16

Algorithm 1: Viterbi
for observationOt ∈ Observations do1

for stateSi ∈ states of observation Ot do2

for stateSj ∈ states of previous observation Ot−1 do3

calculate δ(t, i) ;4

columns of a profile: Match, Delete and Insert. States could transfer to other states

of which the arrow point to, there are probabilities assigned to each state transition.

In addition, once a state of a column is decided, there will be an emitting probability.

For example, in Figure 7, the match state of column 1 is 50%, and the emit probability

of A under match state is 76%.

2.1.2 Viterbi Algorithm

Viterbi algorithm is used to solve the so-called “Decoding” problem, which could

be described as: Given a set of observations, find a route of their according states,

which maximize the probability of observations. As for an event that is consisting

of n observations, if one observation could be mapped to m states, there will be

mn possible routes. Viterbi algorithm applies the dynamic programming method,

suppose δ(t, i) is the probability to be calculated of state i for observation t, and the

Viterbi algorithm could be described as Algorithm 7:

This algorithm gives a general description of Viterbi algorithm, the time complexity

for this algorithm is O(nm2). n stands for the number of observations; m stands for

the number of states of an observation.

17

Figure 8: Foundation of the biological sequence alignment oriented Viterbi algorithm.
The rectangle on the left represents the whole matrix to be computed by the Viterbi
algorithm, and the right side of the figure shows the process of updating a single block
of the matrix.

2.1.3 Biological Sequence Alignment Oriented Viterbi Algorithm

The task of using HMM to align sequence can be described as: Given a template

profile (HMM is build on template profile), and a target profile (which is to be

aligned to template profile), find an optimal route of states assigned to each columns

of template. For example, in Figure 7, if the target is GV , and the red line marks

the route of aligning template to target, so the aligned result is: −GV The ‘insert’

state is permitted to loop over itself, so there would be many repeat ‘insert’ states

to be calculated for one observation. When target is long, it is very time consuming

to calculating so many insert states. The Viterbi Algorithm for Biological Sequence

Alignment is used to solve the redundant computation of ‘insert self-loop’ problem of

general Viterbi algorithm. It reduce the time complexity from O(m2n) to O(len t ∗

len a), (len t stands for the length of template, len a stands for the length of target),

for the detail of this algorithm please refer to [48]. As Figure 8 shows, the fundamental

task of Viterbi Algorithm for Biological Sequence Alignment is to calculate a matrix

consists of len t ∗ len a blocks, each block is consisting of three states: Match, Delete

and Insert, and the value for each state of a block is dependent on the value of previous

block. The Match state is dependent on the upper-left block; the Delete state depends

18

Algorithm 2: ViterbiAlign
for Blockmn ∈ Matrix do1

for stateSi ∈ states of Blockmn do2

for stateSj ∈ three states of dependent Block do3

//when Si is match, the dependent block is Block(m−1)(n−1)4

//Delete Blcok(m−1)n, Insert Blcokm(n−1)5

calculate δ(mn, i) ;6

on the left block and the Insert state depends on the up block. Suppose δ(mn, i) is

the maximal probability of state i for block in matrix of column m and row n, The

Viterbi Algorithm for Biological Sequence Alignment could be described as:

Because there are len t ∗ len a blocks, and each block has three states where each

state refer to three states of the dependent block, therefore, the time complexity for

this algorithm is O(9 ∗ len t ∗ len a). It is an order of magnitude faster than general

Viterbi algorithm used in biological sequence alignment.

2.2 Using Graph based Method to Compute Distance Using
Gene Order Data

2.2.1 Preliminaries

Given a gene set which contains g non-duplicate genes, each gene is marked with a

signed number 1 ≤ |i| ≤ g. We define a breakpoint graph BPG= (V,E), such that V

is consists of 2g vertices, Each gene i is represented by a pair of vertices head (marked

|i| ∗ 2− 2) and tail(marked |i| ∗ 2− 1). These vertices are ordered following the gene

sequence: head(i) is ordered in front of tail(i) if i is positive, Otherwise, tail(i) is

put in front of head(i). If two genes i and j are adjacent to each other in the gene

order(..., i, j....), an edge will connect their adjacent vertices. When dealing with end

points, if the chromosome is circular, two end points of the breakpoint graph will be

connected by an single edge, if the chromosome is linear, each of the two end points

19

will connect by an edge to a separate vertex called a CAP vertex. Fig 9 shows the

BPG for gene order Γ (1,-2,3,-6,5) which is a genome with one circular chromosome

and Π (1,2,3,7,4) which is a genome with one linear chromosome. Double-cut and join

(DCJ) operation is able to simulate all aforementioned rearrangement events using

BPG. The operation cut two edges (one for each genome) and rejoin them using two

possible combinations of end vertices (shown in Fig 10). DCJ distance of genomes

with the same content can be easily calculated by enumerating the number of cycles

in the BPG. comparing with the complex model based on reversal operations, DCJ

operation is simple and powerful.

0 1 2 3 4 5 6 7
Circular

8 9

CAP

10 11 12 13

Figure 9: Example of breakpoint graph for gene order (1,-2,3,-6,5) which is a genome
Γ formed by one circular chromosome, the genome is represented by solid edges. And
gene order (1,2,3,7,4) is a genome Π that has one linear chromosome, the genome is
represented by dashed edges.

a

c d

b

a

c d

ba

c d

b

DCJ

OR

Figure 10: DCJ operation on BPG, which selected two edges (one for each genome);
cut these two edges and rejoin them using two possible combinations of end vertices.

In the BPG that has two genomes Γ and Π, the vertices and the edges of a closed

walk form a cycle. In Fig 9, the walk (1, (1; 3), 3, (3; 4), 4, (4; 2), 2, (2; 1), 1) is a cycle.

A vertex v is π-open (γ-open) if v 6∈ Γ v 6∈ Π. An unclosed walk in BPG is a path.

20

Based on different kinds of end points of the paths, we can classify paths into different

types. If the two ends of a path are CAP vertices, we simply denote this path as

p0, if a path is ended by one open vertex and one CAP, we denote it as pπ (pγ).

If a path is ended by two open vertices, it is denoted by the type of its two open

vertices, for example, pπ,γ represent a path that ends with a π-open vertex and a

γ-open vertex. In Fig 9, the walk (9, (9; 0), 0, (0;CAP), CAP) is a pγ path, and the

walk (11,(11;5),5,(5;12)12) is a pγ,π path. A path is even (odd), if it contains even

(odd) number of edges. In [37], the DCJ distance between two genomes with Indels

but without duplications is calculated by equation (2). From this equation, we can

easily get the distance between Γ and Π in Fig 9 as 4.

(2)distanceindel(Γ,Π) = N − [c+ pπ,π + pγ,γ + bpπ,γc]

+ 1
2(p0

even +min(pπodd, pπeven) +min(pγodd, pγeven) + δ)

Where δ = 1 only if pπ,γ is odd and either pπodd > pγeven, p
γ
odd > pγeven or pπodd <

pγeven, p
γ
odd < pγeven; Otherwise, δ = 0.

An imortant thing to notice is, mathematically optimized distance might not reflect

the true number of biological events, distance estimation methods such as EDE or

IEBP are used to rescale these computed distances [101].

2.2.2 Using DCJ-Indel-Exemplar Distance to Evaluate Dissimilarity

For input of two genomes, an exemplar string is constructed by deleting all but one

occurrence of each gene family. The exemplar distance is the distance that among all

possible exemplar strings, the minimum distance that one exemplar string returns.

Figure 11 shows an example of transforming genomes with duplicated genes into

exemplar genome strings. In [123] the author present a branch and bound algorithm

to compute the exemplar distance.

21

0 1 2 3 4 5 6 7
Circular

8 9 10 11 12 13

0 1 2 3 4 5 6 7
Circular

8 9 10 11 12 13

Figure 11: An example of exemplar mapping from genome Γ (1, -2, 3, 2, -6, 5) and
genome Π (1, 2, 3, 7, 2, 4) to Γ (1, 3, 2, -6, 5) and genome Π (1, 3, 7, 2, 4).

The DCJ-Indel distance can handle genomes which only have Indels, while the ex-

emplar distance can only handle duplications. In this section, we discuss the method

that combine these two distances together to handle genomes with both Indels and

duplications. We call this distance DCJ-Indel-Exemplar distance. The idea is, after

finding a one-to-one mapping of duplicated genes between two genomes, we get an

exemplar genome pair that have Indels. Of all exemplar pairs, find the one with

minimum DCJ-Indel distance, and return this distance as the DCJ-Indel-Exemplar

distance. The DCJ-Indel-Exemplar distance does not reflect the true number of evo-

lutionary events. For one thing, the number of duplications are not counted, for

another, when there are large number of mutations, DCJ distance will underestimate

the distance. Therefore, two steps are followed to adjust the DCJ-Indel-Exemplar

distance. The first step is use EDE [101] to rescale the distance. The second step

is to add the count of duplicated genes. The DCJ-Indel-Exemplar distance after the

adjustment of EDE distance and the addition of number of duplications is set as

the final distance. The DCJ-Indel-Exemplar distance after the adjustment of EDE

distance and the addition of duplication counts is the final distance. The algorithm

22

Algorithm 3: DCJIndelExem
Input: G1 and G2
Output: Minimum distance d
G

′
1, G

′
2 ←randomly init mapping ;1

of all duplicated genes of G1, G2;2

G∗1, G
∗
2 ←remove all duplicated genes of G1, G2;3

min ub← DCJIndel(G′
1, G

′
2) ;4

min lb← DCJIndel(G∗1, G∗2) ;5

Init search list L of size min ub−min lb and insert G1, G2;6

while min ub > min lb do7

G+
1 , G

+
2 ← pop from L[min lb];8

for pair ∈ all mappings of next available duplicated gene do9

G+
1 , G

+
2 ← G+

1 , G
+
2 fix the mapping of pair G+′

1 , G
+′

2 ←randomly init10

mapping ;
of rest duplicated genes of G+

1 , G+
2 ;11

G+∗
1 , G+∗

2 ←remove rest duplicated genes of G+
1 , G+

2 ;12

ub← DCJIndel(G+′

1 , G
+′

2) ;13

lb← DCJIndel(G+∗
1 , G+∗

2) ;14

if lb > min ub then15

discard G+
1 , G

+
216

if ub < min ub then17

min ub = ub;18

else if ub = max lb then19

return d = ub ;20

else21

insert G+
1 , G

+
2 into L[lb]22

23

return d = min lb;24

is described in Algorithm 3.

Because the computation of DCJ-Indel-Exemplar distance is NP-hard, we need to

find a low cost strategy to compute it efficiently. The computation of an exemplar

distance is to set one specific edge for each vertex in BPG. If a gene family has

multiple copies of the gene, its according two vertices (head and tail) in BPG will

have degree of more than 1, and there will be multiple choices picking one edge.

Once we set a “exemplar”, only the edges of the vertices that have degree of more

than one have been changed, Those vertices that has degree of only one are always

23

stable. We can actually see the computation of the DCJ-Indel-Exemplar distance as

the process of computing number of cycles/paths on a streaming breakpoint graph

[152], We can bridge out all the vertices that are stable and just leave those vertices

that are changing. And the result of computation on the changed graph will stay

the same. Suppose there are V vertices in the BPG, and Vs stable vertices and Vd

dynamic vertices, the speedup will be V
Vd

.

2.2.3 Using DCJ-Indel-CD Distance to Evaluate Dissimilarity

Suppose there are two genomes with the same gene content: each gene family has

the same number of genes in both genomes. Assuming that two genomes G1 and G2

have the same gene content. A bijection between G1 and G2 is defined as it specifies

n homologous gene pairs, where n is the number of genes in each genome. If G1

and G2 contain only singleton gene families (exactly one gene in each family in each

genome), then there is a unique valid bijection between G1 and G2, and the DCJ

distance between G1 and G2 can be computed in linear time [150]. If G1 and G2

contain gene families with multiple genes in each genome, then there are many valid

bijections between G1 and G2. Different valid bijections define different one-to-one

correspondences between homologous genes, yielding possibly different DCJ distances

between G1 and G2. We study the following generalized DCJ distance problem: given

two genomes G1 and G2 with the same gene content, find a valid bijection between G1

and G2 that minimizes the DCJ distance. We denote the generalized DCJ distance

between G1 and G2 as d(G1, G2). Because finding bijections of gene families between

two genomes can be view as the maximum cycle decomposition problem. The problem

can be view as: given two genomes and their breakpoint graph representation, find

a cycle decomposition that minimize the number of resulting cycles in the BPG.

Figure 12 shows an example of two genomes with duplication on gene family 2. A

24

cycle decomposition is given by mapping the first gene 2 of genome Γ to the second

gene 2 of genome Π. There is Integer Linear Programming method compute the

exact solutions for this problem [98]. Which is based on constraints that all singleton

gene families will be present in the final solution and the cycle selection can correctly

reflect the gene bijection.

0 1 2 3 4 5 6 7
Circular

8 9 10 11 12 13

0 1 2 3 4 5 6 7
Circular

8 9 10 11 12 132’ 3’

Figure 12: An example of cycle decomposition results for a bijection from genome Γ
(1, -2, 3, 2, -6, 5) and genome Π (1, 2, 3, 7, 2, 4) to Γ (1, -2, 3, 2’, -6, 5) and genome
Π (1, 2’, 3, 7, 2, 4).

There are some restrictions with the previous maximum cycle decomposition work.

For one thing, it restrict that all duplicated gene families should have exactly the

same number of genes in each genome; for another, it does not allow genomes to have

Indels. Here, we introduce the distance we called DCJ-Idel-CD distance. Which is

formally described as, given a MBG representations of two genomes which contains

both Indels and duplications (there might be different number of duplication copies

in each genome), find a maximum cycle decomposition in this MBG that minimize

the DCJ-Indel distance of the resulting MBG.

We can use the similar methods in DCJ-Indel-Exemplar distance algorithm to design

a branch-and-bound algorithm to solve the DCJ-Idel-CD distance problem. To begin

25

with, we need to specify the way to compute upper and lower bound. The computa-

tion of upper bound is easy, once we fixed some duplicated gene families’ bijection,

we can randomly initialize other duplicated gene families’ bijection, and compute a

DCJ-Indel distance as the upper bound. For the lower bound, we can prove that by

removing all the occurrences of unfixed duplicated gene families, the resulting DCJ-

Indel distance is monotony decreasing, therefore we can use this distance as the lower

bound. The pseudo code for the branch and bound algorithm is as Algorithm 4 shows.

In [98], they mentioned that the cycles of length two can be directly fixed without

being considered different possible combinations of bijections. It’s also applicable to

our algorithm.

2.2.4 Experimental Results

2.2.4.1 Results for DCJ-Indel-Exemplar Distance

We simulated the data sets using genomes with 200 genes. To show how Indels and

duplications affect the estimation of the distance, we divide the data set into multiple

groups with varied Indels rate (γ, which varied from 0% to 10%), and duplication

rate (φ, which varied from 0% to 10% as well). For each Indels or duplication event,

only one gene is inserted/deleted or duplicated. We compare the change of distance

estimation with the change of mutation rate (θ, which varied from 10% to 100%),

with one specific setting of γ and φ. We used reversal operation to simulate the

mutation mainly because DCJ distance and reversal distance is quite similar when

using genome data of same contents.

The result for DCJ-indel-exemplar distance and DCJ-indel-exemplar distance cor-

rected by EDE are shown in Fig 13. As for the impact of different evolution operation

rates, the main factor that affect the accuracy of distance estimation is the change

of rate γ. This is mainly because an Indel after a duplication can offset the count

26

Algorithm 4: DCJIndelCD
Input: G1 and G2
Output: Minimum distance d
G1, G2 fix the cycle of length two ;1

G
′
1, G

′
2 ←randomly init bijection ;2

of all duplicated genes of G1, G2;3

G∗1, G
∗
2 ←remove all duplicated genes of G1, G2;4

min ub← DCJIndel(G′
1, G

′
2) ;5

min lb← DCJIndel(G∗1, G∗2) ;6

Init search list L of size min ub−min lb and insert G1, G2;7

while min ub > min lb do8

G+
1 , G

+
2 ← pop from L[min lb];9

for pair ∈ all bijection of next available duplicated gene do10

G+
1 , G

+
2 ← G+

1 , G
+
2 fix the bijection of pair G+′

1 , G
+′

2 ←randomly init11

bijection ;
of rest duplicated genes of G+

1 , G+
2 ;12

G+∗
1 , G+∗

2 ←remove rest duplicated genes of G+
1 , G+

2 ;13

ub← DCJIndel(G+′

1 , G
+′

2) ;14

lb← DCJIndel(G+∗
1 , G+∗

2) ;15

if lb > min ub then16

discard G+
1 , G

+
217

if ub < min ub then18

min ub = ub;19

else if ub = max lb then20

return d = ub ;21

else22

insert G+
1 , G

+
2 into L[lb]23

24

return d = min lb;25

of both Indel and duplication and makes the distance underestimated. Both θ and

φ seem to have little effect on the distance estimation. As for the effect of different

distance estimation models, the result indicates that when the DCJ rate is moderate,

both distances are close to the true result. While with the DCJ rate increases, the

EDE corrected distance is more accurate than the DCJ-indel-exemplar distance with

the growth of θ. EDE tends to underestimate distances when γ is 0%, but tends to

overestimate them when γ > 0%

27

(a) γ = 0.0, φ = 0.05 (b) γ = 0.0, φ = 0.1

(c) γ = 0.05, φ = 0.05 (d) γ = 0.05, φ = 0.1

(e) γ = 0.1, φ = 0.05 (f) γ = 0.1, φ = 0.1

Figure 13: Distance computation results, the x-axis represents the actual number
of DCJ operations and the y-axis represent the computed distance for the methods
using DCJ-indel-exemplar distance, DCJ-Indel-Exemplar distance corrected by EDE,
and the true estimator.

28

(a) γ = 0.0, φ = 0.05 (b) γ = 0.0, φ = 0.1

(c) γ = 0.05, φ = 0.05 (d) γ = 0.05, φ = 0.1

(e) γ = 0.1, φ = 0.05 (f) γ = 0.1, φ = 0.1

Figure 14: Distance computation results, the x-axis represents the actual number
of DCJ operations and the y-axis represent the computed distance for the methods
using DCJ-indel-CD distance, DCJ-indel-CD distance corrected by EDE, and the
true estimator.

29

2.2.4.2 Results for DCJ-Indel-CD Distance

We run the experiment using the same data sets as in the DCJ-indel-exemplar dis-

tance experiment. The result for DCJ-indel-CD distance and DCJ-indel-CD distance

corrected by EDE are shown in Fig 14. We can see that the result for DCJ-indel-CD

distance and DCJ-indel-exemplar distance are quite similar, with the DCJ-indel-CD

distance a little bit of more under estimate the distance. This is mainly due to the

reason that for the DCJ-Indel distance, when computing the number of duplication

events, if the occurrences of a duplicated gene family are ordered consecutively, the

algorithm will output distance as one single Indel consequently. While the actual

number of duplication events might be more than one. Another reason is the same

as the under estimate of the DCJ-indel-exemplar distance, which is rooted from the

process in the simulation, the Indels events will offset the duplication events. For

example, when a duplication happened, the following Indel event might delete the

duplicated gene. These two events will be counted in the simulation but not be de-

tected in the distance computation algorithms. DCJ-Indel-Exemplar distance has the

advantage of less search space reuirement, because it only need one to one mapping

intead of multiple to multiple mapping for DCJ-Indel-CD distance. But considering

that DCJ-Indel-Exemplar method is exact algorithm, and its accuracy is not depen-

dent on the estimation on duplication events based on counting of number of different

genes in a single gene family. It has its merit of being applicable to more complex

scenarios.

30

Chapter III

MEDIAN COMPUTATION

3.1 Introduction to Genome Median Problem under DCJ
Criteria

We firstly introduce the following concepts: Multiple Breakpoint Graph (MBG):

Given multiple genomes which have the same set of non-duplicated genes, we can

define a MBG by using different type of edges to represent different genomes. If

genomes consist only of circular chromosomes, the constructed graph is a MBG.

Figure 15(a) shows the MBG for three gene orders ((1,2,3);(1,3,2);(1,-2,-3)). It’s easy

to notice that MBG is 3-regular graph.

Capped Multiple Breakpoint Graph (CMBG): If genomes consist of single

or multiple linear chromosomes, the constructed graph is CMBG. Figure 15(b)

shows the CMBG for three gene orders that each are consisted of two chromosomes

((1,2;3,4);(1,3;2,4);(-1,2;-4,3)) (‘;’ indicates the end of a chromosome). Other than

CAP vertex, every vertex in CMBG has degree of 3. If not specified, we use BPG

to represent all these three classes of graphs.

Adequate Subgraphs (ASs): ASs defined in [146, 142] are such graphs that if a

BPG is partitioned into two parts, one part is an AS, the other part is the rest of

the graph, there will be no 0-matching edges connecting these two parts. ASs can be

used to partition the BPG and help to find the DCJ median without losing accuracy.

31

0

5

3

4

1

2

(a) MBG

0

cap

2

1

4

63
5

7
color i
color j

color k

(b) CMBG

Figure 15: Examples of Breakpoint Graphs.

0

5

3

4

1

2

0

5

3

4

1

2
Shrink

AS

(a) 0-matching, AS, shrinking on edge without CAP
vertex.

0

CAP

1

2

Shrink

0
CAP

1

2

CUP

color i
color j

color k

color i
color j

color k
z-matching

(b) shrinking on edge with CAP vertex.

Figure 16: Examples of operations on BPG.

Edge Shrinking: ASs can be bridged out from the BPG by edge shrinking opera-

tions. When an AS is selected to partition the graph, its possible 0-matching edges

are selected at first. Then, if one 0-matching edge does not contain CAP vertex,

edges of the same type that incident to the same 0-matching edge will be joined into

a single edge; If the 0-matching edge contains a CAP vertex, the edge incident to the

non-CAP vertex will be connected to a CUP vertex. Figure 16(a) shows examples of

0-matching, AS, and edge shrinking on the edge that does not contain CAP vertex.

Figure 16(b) shows an example of edge shrinking on edge that contains a CAP vertex.

Edge Expansion: Edge expansion is the reverse operation of edge shrinking.

32

Best-first-search based Branch and Bound Algorithm (A* BnB): The best

algorithm to solve the DCJ median problem is an A* BnB algorithm. When searching

on a search node represented by a BPG with v vertices, first it traverses the BPG to

detect ASs, which is a classic sub-graph isomorphism problem [139]. Since this step

only detects small ASs of limited patterns, special algorithms have been developed

which all have time/space complexity of O(v); second, if there are ASs found, one

or two child search nodes will be expanded by shrinking the 0-matching edges in ASs,

otherwise there will be v−1 child search nodes expanded. At the very beginning of this

search process, there usually are a lot of ASs in BPG, but after a few steps, BPG will

be altered to a state that for the first time there is no ASs exists in it, we call it BPG

kernel, and the number of vertices in BPG kernel is marked as κ. When the searching

process reaches BPG kernel, it’s hard to generate new ASs by shrinking “assumed”

0-matching edges, and the following search processes have a branching factor decided

by κ. This step has time/space complexity of O(v); third, each BPG of the expanded

child search node will be traversed to get cycle/path number for updating the upper

and lower bounds. In this step, if ASs are detected, the time/space complexity is

O(v). In contrast, if there is no ASs detected, the time/space complexity become

O(v2).

The DCJ median algorithm can be briefly described by a branch and bound (BnB)

process [146, 143, 142] on MBG, which we show an example in Fig 17. To begin

with, the purpose of the DCJ median algorithm is to find a maximum matching

in MBG, which we called 0-matching, and it is represented by grey edges in the

example. If we use m to represent a possible median solution and M to represent

the best median, the 0-matching for the final solution should satisfy the property

M = argmin
m

distance(m, i) i ∈ (1, 2, 3).

The first step in the BnB process is to decompose the graph by using Adequate

33

0

5

3

4

1

2
Adequate subgraph
decomposition

0

5

3

4

1

2

Find 0-matching
by branching

5 2

0

3

4

1

0

3

4

1
Continue searching

by bounding

5 2

0

3

4

1

0

3

4

1

upperbound: 3

lowerbound: 3

Return the

5 2

0

3

4

1

0

3

4

1 upperbound: 3

lowerbound: 3

5 2

5 2

5 2
best results

Figure 17: Example of multiple breakpoint graph (MBG) for gene order (1,2,3)
which is represented by solid edges;(1,3,2) which is represented by dashed edges;(1,-
2,-3) which is represented by dotted edges. The branch and bound (BnB) process for
computing median genome is shown in the figure.

Sub-graphs (ASs) [146, 143, 142]. The decomposition is achieved by performing edge

shrinking operation. In Fig 17, example of AS including vertex 2 and 5 is decomposed

through edge shrinking; once an AS is decomposed, the according 0-matching is set.

The second step is to branch the remaining possible 0-matching edges. A new MBG is

generated by shrinking one of possible 0-matching edges. The upper and lower bound

for the new MBG are calculated by using the equation (3) and (4). Where N is half

the number of vertices in the original MBG, n is half the number of vertices in the

34

new MBG, cycles(m, i) is the number of cycles already formed between 0-matchings

m and the input genome i, and distance(i, j) is calculated using the new MBG. In

Fig 17, when 0-matching (0; 3) is chosen, the corresponding upperbound = 3 and

lowerbound = 3

(3)upperbound = 3(N − n)−
∑

i∈(1,2,3)
cycles(m, i)

+
∑

i,j∈(1,2,3)
distance(i, j)− min

i,j∈(1,2,3)
distance(i, j)

(4)lowerbound = 3(N − n)−
∑

i∈(1,2,3)
cycles(m, i) +

∑
i,j∈(1,2,3) distance(i, j)

2

Continue the BnB process, until upperbound = lowerbound, then the optimal 0-

matching is found; the corresponding gene order representation is the output median

genome. In Fig 17, there are two optimal median genome results, which are: (-1,-2,-3)

and (1,-2,-3).

3.2 Using Streaming Breakpoint Graph Analysis Methods
to Accelerate the Median Computation

The concept of κ is introduced in the the description of A∗BnB. One very important

point to notice is that, κ determines the performance of this A* BnB algorithm. To

begin with, the algorithm’s branching factor is decided by κ. In addition, if there

is no ASs in a search node, the third step in the A* BnB will have complexity of

O(v2), which makes the complexity for processing this search node O(v2). Last but

not least, if κ is large there will be a huge number of BPGs generated for child search

nodes, which makes this algorithm additionally bound by I/O. However, most of the

operations on BPG is minor, which only involves change on one edge, by utilizing the

35

properties of streaming BPG, it is possible to reduce both time and space requirement

for processing a search node.

3.2.1 Compressed Data Structures for Memory and I/O Efficiency

f-a

*f-a+(s,t1) *f-a+(s,ti) *f-a+(s,tv)......

Figure 18: Child node i, just need to store a pointer to f-a, and an edge (s, ti), need
O(1) storage.

In the current DCJ median algorithm, every time when there are new child search

nodes expanded, new BPGs will be allocated and pushed into a search list. As a

result, huge amount of memory allocation and I/O can not be avoided. Because each

BPG of a child search node is generated from shrinking edges of the BPG of the root

search node following several steps, we can store these edges as ”footprints” instead of

BPGs themselves. Here, because we only consider search nodes from the BPG kernel

stage (because processing node before this stage is fast), every search node could only

store footprints after the BPG kernel stage. In other words, there is only one BPG in

the memory, when finished processing search node a with footprint f-a, and continue

searching from another search node b with footprint f-b, edges of BPG in f-a are

expanded then edges in f-b are shrunk to switch from node a to node b. In addition,

if there is no AS found in the parent search node, the expanded v − 1 child search

nodes will all share the same footprint of their parent. Under such circumstance, the

cost of storing a child search node can be additionally contracted to only 1 edge and

a pointer to the footprint of their parent search node.

36

3.2.2 A Fast Method to Update Cycle/Path Numbers

In the current DCJ median algorithm, every vertex needs to be visited once to esti-

mate cycle/path numbers for bounding. However, when the BPG of a child search

node is generated by just shrinking one edge from the BPG of its parent node, we

have the following observations (see Figure 19 for example.) to help design quick

method to update cycle/path numbers. Suppose shrinking one 0-matching edge con-

necting two vertices a and b (a and b are not neighbors, because if they are neighbors

after shrinking, they will be bridged out from the BPG and there will be no change

in the cycle number), the i and j color edge of a is connected to vertex x and y, the

i and j color edge of b is connected to vertex w and z.

Observation 1 If a and b are in different connected components (ijc or path), and

at least one vertex is in a ijc, after shrinking, the number of ijc will decrease by 1.

Proof 1 i) If a and b are both ijc, To prove that the number of ijc is reduced by 1

is to show that after shrinking, x, y, w and z are connected. Case 1, if x, y are the

same vertex x′ (overlapped) and w and z are the same vertex w′, after shrinking both

i and j color edge of x′ will be joined with i and j color edge of w′, x′ and w′ are

connected. The same proof for when Case 2, if x and y (or w and z) are the same

vertex x′ (or w′) and w and z (or x and y) are the different vertex. Case 3, if x, y,

w and z are different vertex ii) suppose a (b) is in a ijc and b (a) is in a path, after

shrinking, x, y, w and z are connected, because x and y (w and z) are connected with

CAP/CUP vertex, so the cycle number will decrease 1.

Observation 2 If a and b are in the same cycle, after shrinking, the number of ijc

could be changed by either increase 1, or stay the same).

Proof 2 To prove that the number of ijc changed is ≤ 1 is equivalent to show that

37

after shrinking, there are at most two connected component generated. Case 1, if x,

y, w and z are different vertices, after shrinking, x and w will be connected with i

color edge while y and z will be connected with j edge, there are at most two connected

components. The same proof goes for when Case 2, if x and y (or w and z) are the

same vertex x′ (or w′) and w and z (or x and y) are the different vertex. Case 3, if

x, y are the same vertex x′ (overlapped) and w and z are the same vertex w′.

Observation 3 If a and b are in the same path, after shrinking, the number of cycles

will be increase by 1 if and only if x and w are in the same adjacent vertices set after

the component is separated by a and b.

Proof 3 Sufficiency: if x and w are in the same separated component, after shrink-

ing, i color edge of both x and w will be joined together, and there will be no other

edge connecting to another component, and the cycle number will increase one. Ne-

cessity: if x and w are in the different separated component, after shrinking, these

two separated component will keep connected, because i color edge of both x and w

will be joined together, and the cycle number will not increase.

Observation 4 If at least one of a and b are in a path, after shrinking, the number

of path stays the same.

Proof 4 Because a path starts from a CAP/CUP vertex and ends with a CAP/CUP

vertex, the number of paths equals to half of the number of edges connected with

CAP/CUP. 1) when a (b) is not connected with CAP/CUP, after shrinking the num-

ber of edges connected with CAP/CUP will not change. 2) when a (b) is connected

with CAP/CUP, after shrinking the neighbor vertex (not CAP/CUP) of a (b) will

connect with CAP/CUP, and the number of edges connected with CAP/CUP will not

change. 3) when a (b) is CAP, after shrinking the neighbor vertex of a (b), will be

connected with CUP, and the number of edges connected with CAP/CUP will not

38

change. Based on 1-3) the number of path will not change after shrinking.

(a) An example of observa-
tion 1.

(b) examples of observation 2. (c) An example of observation 3
and 4.

Figure 19: Examples of different observations when only one 0-matching is shrunk.

update cycle fast(a, b)

if a and b in different cycle then

cycle number decrease 1;

else {a or b is in a cycle}

x=neighbor[a][i] ;

w=neighbor[b][i] ;

if x and w are in the same

adjacency vertices set then

cycle number increase 1;

end if

end if

update path type fast(a, b)

if a and b in different path then

update path types;

else {a or b is in a path}

x=neighbor[a][i] ;

w=neighbor[b][i] ;

if x and w are in the same

adjacency vertices set then

cycle number increase 1;

update path types;

end if

end if

Based on Observation 1, 2 and 3, we can update the cycle number in O(1) time if

only one 0-matching edge is shrunk. Based on Observation 4, it’s possible to visit

only the connected component of affected vertices to determine the change of path

type. The summarized fast algorithm for updating cycle/path number is shown in

update cycle fast(a, b) and update path fast(a, b) separately.

39

3.2.3 Heuristics for Reducing Search Space

In a recent paper [118], they designed approximation algorithm to compute DCJ

median, though DCJ median problem is APX-hard, the algorithm achieved a good

approximation rate for reverse median problem [30] (using DCJ median algorithm to

approximate reverse median problem). This method can be served to provide initial

tighter lower bound, even though it might not be helpful for reducing search space,

it can be useful in reducing space requirement, because those branched search node

whose upper bound is smaller than the global maximal lower bound will be discarded,

and the initialization of a tighter global lower bound can increase this threshold. In

this paper, we introduce a branching strategy, which is helpful to quickly exhaust

search nodes with the maximal upper bound and approach lower bound faster. In

[143], the author state that the upper bound is upperBound = c + 3
n

+ c1,2+c1,3+c2,3
2

(actually, this formula is just for circular chromosomes, but we can extent it to linear

chromosomes). Suppose vertex Vk is in ijck and we define cycle rank sum of Vk as

R(Vk) = ∑
(i,j)∈(1,2,3),i 6=j |ijck|.

Proposition 1 If there is no AS detected, and we select the vertex Vk in BPG such

that R(Vk) = min(R(Vi))(Vi ∈ BPG), and shrink this vertex with other vertices in

BPG to generate |2v− 1| intermediate child BPGs, the number of child BPGs with

upper bound value that is equal to the global maximal upper bound is minimized.

Based on Observation 1, we know that if two vertices are in different component

(cycle), after shrinkage the total cycle number will decrease by 1, since vertex Vk

with R(Vk) = min(R(Vi))(Vi ∈ BPG) has the least number of vertices that share

component(cycle) with it, then shrink this vertex with all other vertices will cause

the maximal number of cycles to merge, and the upper bound will decreased.

40

3.2.4 Experimental Results

We conduct our experimental tests of the streaming breakpoint graph based algorithm

engineering methods on a machine using the linux operating system with 16 Gb of

memory and an Intel Xeon CPU E5530 16 core processor, each core has 2.4GHz of

speed. Because the existing DCJ algorithms (both for circular and linear chromo-

somes) are implemented using JAVA [146, 142, 145], we also implement our algorithm

using JAVA, all of the source code are compiled with JDK1.7 with -O option.

3.2.4.1 Time/space usage

In [146, 142, 145], the authors analyzed the performance of the original DCJ median

algorithm with a simplified model, i.e. they only allowed reversal as the event and

assumed that the DCJ distance between each of the three species is the same. In this

paper, we generate simulated data using a model which is biologically more accurate.

First we generate phylogenetic model trees of three genomes by using a birth-death

model [89]. Then, based on the model tree, we execute DCJ operations on each

genome for some random times, then we select the generated data of a specific κ,

we collect 10 data samples for each κ. For the test of time/space complexity, we

run the program to process only 10k search nodes then return. In the experiment,

we have a parameter called thresh, which stands for the threshold for the number of

graphs stored in the memory, if the number exceeds this threshold, these graphs will

be stored back to the disk. We have tested the threshold for 2k and 10k nodes.

In Figure 20, combined with the total time, we also recorded four types of time: time

to detect adequate sub-graphs, time to store and retrieve graphs, time for I/O and

time to update lower/upper bounds. We can see from the figure that for the original

algorithm, under all of cases, the time grows quadratic (since the time for the original

41

 0

 200

 400

 600

 800

 1000

 1200

 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

on
ds

)

kappa(kernel size)

time for I/O

cir_2k_s
lin_2k_s
cir_10k_s
lin_10k_s
cir_2k_o
lin_2k_o
cir_10k_o
lin_10k_o

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

on
ds

)

kappa(kernel size)

time for accessing memory

cir_2k_s
lin_2k_s
cir_10k_s
lin_10k_s
cir_2k_o
lin_2k_o
cir_10k_o
lin_10k_o

 0

 50

 100

 150

 200

 250

 300

 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

on
ds

)

kappa(kernel size)

time for updating # of cycle/path

cir_2k_s
lin_2k_s
cir_10k_s
lin_10k_s
cir_2k_o
lin_2k_o
cir_10k_o
lin_10k_o

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

on
ds

)

kappa

time for AS(adequate subgraph detection)

cir_2k_s
lin_2k_s
cir_10k_s
lin_10k_s
cir_2k_o
lin_2k_o
cir_10k_o
lin_10k_o

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

on
ds

)

kappa(kernel size)

time for total execution

cir_2k_s
lin_2k_s
cir_10k_s
lin_10k_s
cir_2k_o
lin_2k_o
cir_10k_o
lin_10k_o

Figure 20: Time complexity comparison for our streaming algorithm (-s) and the
original algorithm (-o).

algorithm to run larger data (κ > 500) is extremely huge, we do not include these

results), and for our stream algorithm, the time grows linearly. This is also true for

the separate time of I/O, memory access and bound update. Another thing is, when

the threshold is increased from 2k to 10k, our stream algorithm time reduces a lot on

both circular and linear chromosome cases, but as for the original algorithm, it even

takes more time. In addition, we have also noticed the reduce of time for detecting

ASs, this could due to our code optimization, but also the improvement of memory

42

 0

 1

 2

 3

 4

 5

 100 200 300 400 500 600 700 800 900 1000

sq
rt

(G
b)

kappa(kernel size)

sqrt(disk space usage)

cir_2k_s
lin_2k_s
cir_10k_s
lin_10k_s
cir_2k_o
lin_2k_o
cir_10k_o
lin_10k_o

 0

 100

 200

 300

 400

 500

 600

 700

 800

 100 200 300 400 500 600 700 800 900 1000

M
b

kappa(kernel size)

memory space usage

cir_2k_s
lin_2k_s
cir_10k_s
lin_10k_s
cir_2k_o
lin_2k_o
cir_10k_o
lin_10k_o

Figure 21: Space complexity comparison for our streaming algorithm (-s) and the
original algorithm (-o).

locality, since there is only one graph stored in the memory. Last but not least, we

can see that in the original algorithm, it spends more time on bound update than

ASs detection, but our streaming algorithm reduce the bound update time to less

than ASs detection time.

Figure 27 shows the space usage for the original algorithm and our streaming algo-

rithm, it’s very clear that our algorithm takes way less storage(memory and disk)

than the original algorithm. One thing to notice is, for every graph in the original

algorithm, it stores the according median genome for that graph, and the space usage

is O(g), we disable this storage to make the comparison fair, because our “footprint”

based data structure and make sure that we don’t need to keep the median genome

information.

3.2.4.2 Problem space for complete search

In our previous discussion, we state that the performance of DCJ algorithm is directly

dependent on BPG kernel size κ, and the figure shows that both the time/space com-

plexity have been reduced, which makes our improvements well justified. However,

the improvement of the time/space complexity can only introduce at most two orders

43

Table 1: The running time and search space for circular chromosomes
Search space for Circular Chromosome

κ method finished avg time avg search space
80 optimized 10/10 6.42 159784

non-optimized 8/10 >336.61 > 9861818
90 optimized 10/10 27.66 669608

non-optimized 6/10 N/A N/A
100 optimized 10/10 850.33 17146636

non-optimized 1/10 N/A N/A
Search space for linear Chromosome

κ method finished avg time avg space
80 optimized 10/10 44.77 442855

non-optimized 10/10 6576.07 71782336
90 optimized 10/10 201.48 1729328

non-optimized 2/10 N/A N/A
100 optimized 10/10 24236.91 138420207

non-optimized 0/10 N/A N/A

of magnitude of speedup, we can additionally reduce the search space to gain more

performance by using heuristics. In Table 1, it shows the comparison between meth-

ods that performs the heuristic of upper/lower bound (optimized) and which does

not use heuristics (non-optimized). For a given κ, if the non-optimized algorithm can

not finish the search by searching the maximal number of search nodes of optimized

algorithm, we marked it as “unfinished”. From the table, it’s very clear that our

heuristic reduced search space for both circular and linear chromosomes by a factor

of nearly two.

3.3 Using Genetic Algorithm to Solve Genome Median Prob-
lems

There are attempts of applying genetic algorithm to handle the DCJ median problem

[62, 49]. Their approaches are relied on sorting. In this section, we will firstly in-

troduce a method of recovering the ancesor gene orders (CAR), and its probabilistic

alternation. This method form the basis of initialization of the gene orders for the

genetic algorithm. In the genetic algorithm section, we also mention about our own

approaches of performing evolutionary computing to get the median result.

44

3.3.1 Distance Space

Given three genomes g1, g2 and g1, suppose there are some distance metric x, and the

distance value is discrete. The distance between gi and gj is distx(i, j). Given a me-

dian genome gm, we have its distance between all other three genomes as (distx(m, 1),

distx(m, 2), distx(m, 3)), which is a triple, and it satisfies the following constraints:



distx(m, 1) + distx(m, 2) ≥ distx(1, 2)

distx(m, 1) + distx(m, 3) ≥ distx(1, 3)

distx(m, 2) + distx(m, 3) ≥ distx(2, 3)

distx(m, 1) + distx(m, 2) ≤ maxi 6=j 6=k≤3
i,j,k (distx(i, j) + distx(i, k))

distx(m, 1) + distx(m, 3) ≤ maxi 6=j 6=k≤3
i,j,k (distx(i, j) + distx(i, k))

distx(m, 2) + distx(m, 3) ≤ maxi 6=j 6=k≤3
i,j,k (distx(i, j) + distx(i, k))

(5)

Any distance triple that satisfy the above constraint is a distance configuration (dc).

3.3.2 Median Genome Reconstructor

Given three genome sequences, we can use Ma’s method to construct their predecessor

graph (PG), then construct the intersection graph (IG) based on three predecessor

graphs. To remove ambiguities in IG, we can use the following formula to weight an

edge:



weight(Es,t) = ∑i 6=j≤3
i,j

distx(m,i)·occur(Es,t,j)+distx(m,j)·occur(Es,t,i)
distx(m,i)+distx(m,j)

occur(Es,t, i) =


if Es,t ∈ PG(i)

otherwise

(6)

45

In the above formula, Es,t is the edge in IG that connect from vertex s to t. Once

every edge in IG is weighted, they are sorted by their weight. And the edges with

lowest weight are removed from IG iteratively until no ambulations exits. The result

median genome generated by such way of a given dc is marked as gm(dc). Our object

is, of all possible dc, find a dc that:

DC = argmin
dc

∑
i∈(1,2,3)

distx(m(dc), i) (7)

And the genome gm(DC) is the median we want.

3.3.3 Probability Based Method

Since there is also a probabilistic framework [92] to disambiguate the edge, we can

also use this method to infer the median. Suppose Ds represents the observed edges

in the IG starting from a given vertex s, and for an edge Ej
s , which means the edge

start from s and is the part in PGj. the probability using Bayes theorem of this edge

to be in the median genome is:

P (Ei
s|Ds) = P (Ds|Ei

s)∑3
j=1 P (Ds|Ej

s)
(8)

Then the probability of P (Ds|Ei
s) can be calculated by the following formula:

P (Ds|Ei
s) =

3∑
k=1

P (Dk
s |Ei

s) (9)

In which,

P (Dk
s |Ei

s) =


1

2n−1 + 2n−2
2n−1e

−(2n−1)α(m,k)t(m,k) if Dk
s = Ei

s

1
2n−1 −

1
2n−1e

−(2n−1)α(m,k)t(m,k) otherwise
(10)

46

And α(m, k)t(m, k) can be calculated by:

α(m, k)t(m, k) = − 1
2n− 1 ln(1− 2n− 2

2n− 1 ·
distx(m, k)

n
) (11)

3.3.4 Genetic Algorithm Design

If we can find a good encoding and evolution strategy for genome rearrangement

events. Genetic computing might help us to design a good heuristics for the median

computation or even phylogenetic tree construction. Here we propose a encoding and

evolution strategy:

Encoding: since there are 2g vertices in the BPG, there are 2g(2g−1)/2 = g(2g−1)

possible edges, we can use a binary matrix M of length 2g(2g − 1) to represent the

selection of each edges under the constraint ∑j<g
j=1

∑i<g
i=1 Mij ≤ g and ∑j<g

j=1 Mij = 1∀i.

Fitness Function: we can add three other arrays to represent the encoding of the

input genomes, based on these arrays, we can design algorithms to calculate number

of cycles/paths for the current generation encoding.

Mutation: We can prove that if two 0−matching edges are in the same 0− i cycle

(i ∈ 123), if we use double cut and join operation to reorganize these two edges, the

number of 0 − i cycles will keep the same or increase by 1. In addition if two edges

exists in more than two same 0 − i cycles, after DCJ operation, the DCJ median

distance will keep the same or decreased. We can use this feature to help design

mutation function.

Selection: We can use the simplest roulette select as the selection function. However,

there might be other ways to design the selection function to give different species

more diversity. There are some problems in designing the selection function, for

example, the difference between a “good” and a “bad” species is usually very small,

47

which means their probability of being chosen might be very close, therefore, we need

to find a way to distinguish between “good” and bad candidates.

Crossover: Actually, there is no good cross over strategy yet. Because it’s pretty

hard to find a partition of edges between two graphs, and after exchanging these

edges, the edges in two different graphs are still matchings. We designed a simple

cross over strategy, that will only exchange the edges between two graphs that share

the same head vertex. This method has the risk of reducing the diversity of the

algorithm.

3.3.5 Experimental Results

We use the simulated data with the kernel size κ ranging from 100 to 1000. And

compare the CAR median solver with the BnB based DCJ median algorithm. Since

when κ is large, it takes huge amount of time for BnB algorithm to conclude to the

global optimum. Considering that after searching for 10k search nodes, the BnB

algorithm is already close to the optimal result, in this experiment, we only run BnB

algorithm to search for 10k nodes. The experimental results are shown in Figure 22.

We can see that the branch and bound based method is constantly outperforming

CAR based method. This is because when κ is large, there are very few common

ancestor adjacencies between three input genomes which makes the selection of CAR

quite random and inaccurate.

We use the same data and test the Genetic algorithm using three different initial-

ization methods: 1) randomized method: initiate every 0−matching in random; 2)

uniform method: in which vertex 2i is connected to vertex 2i + 1; 3) CAR based

method: in which we initialize the 0−matching by using the CAR median algorithm

mentioned before. The genetic algorithms run for 1000 iterations to terminate, and

48

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 100 200 300 400 500 600 700 800 900 1000

D
C

J
 M

e
d

ia
n

 D
is

ta
n

c
e

kappa

comparison between BnB method and CAR method

CARMedian
BnB10k

Figure 22: Comparison of BnB method and CAR based method.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 100 200 300 400 500 600 700 800 900 1000

D
C

J
 M

e
d

ia
n

 D
is

ta
n

c
e

kappa

Genetic algorithm to solve DCJ median problem

Rand_GA1K
Homo_GA1K
CAR_GA1K
BnB10K

Figure 23: Comparison of different initialization methods in GA algorithm.

return the current best result. The experimental results are shown in Figure 23. We

can see that in general the BnB method performs better than GA algorithm ini-

tialized using randomized and uniformed way. However, GA algorithm using CAR

initialization method constantly perform better than BnB method and yield better

medians. Therefore, we can conclude that GA algorithm is highly affected by the

initialization method, and of which if it is properly selected, it can get pretty good

49

medians which is close or equal to the real median results.

3.4 Using Lin-Kernighan Heuristic to Find DCJ Median
with Genomes of Unequal Contents

3.4.1 Problem Statement

Not surprisingly, finding the median genome that minimize the DCJ-Indel-Exemplar

distance, is challenging. Because given three input genomes, there are infinite number

of possible gene content selections for a median genome. Therefore, to make the

problem easier, we can define a relaxed version of the median problem by providing

known gene content.

DCJ-Indel-Exemplar median

Instance. Given the gene content of a median genome, and gene orders of three

modern genomes.

Question. Find an adjacency of the genes of the median genome that minimize

the DCJ-Indel-Exemplar distance between the median genome and the three input

genomes.

DCJ-Indel-Exemplar median problem is NP-hard because there is no polynomial time

algorithm to verify the results. Unfortunately, it’s hard to design an exact BnB al-

gorithm for DCJ-Indel-Exemplar median problem mainly because of two reasons: 1)

the DCJ-Indel-Exemplar distance does not satisfy the property of triangular inequal-

ity. For example, given three genomes of A(1, 2, 3), B(−1,−1, 2, 3) and C(−1, 2, 3),

distance(A,B) = distance(A,C) + distance(B,C) = 1, which violate the triangular

inequality rule, and make the bound computation incorrect. 2) when a 0-matching

edge is selected, edge shrinking is performed to generate the new MBG. The problem

is, when there are duplicated genes in a genome, it’s possible that there are multiple

50

edges of the same type connecting to the same vertex of a 0-matching. This leads to

ambiguity in the edge shrinking step, which makes the followed BnB search process

very complicated and extremely hard to implement.

3.4.2 Design of Lin-Kernighan Heuristic

We use Lin-Kernighan (LK) heuristic to solve the DCJ-Indel-Exemplar median prob-

lem. The heuristic can generally be divided into two steps: initialization of 0-

matching for the median genome, and LK search to get the result.

The initialization problem can be described as: given gene content of three genomes,

find a median genome gene content that minimizes the sum of the number of Indels

and duplications operations that transfer the median genome to other three genomes.

In this paper, we design a very simple rule to initialize the gene content of the median

genome, which is, given the count of one gene family of three genomes. If two or three

counts are the same, we just select this count as the count of the gene family in the

median genome. If all three counts are different, we select the median count as the

count of the gene family in the median genome.

After fixing the count of genes, the next step is to set up the 0-matching in the MBG,

In this paper, we randomly set up the 0-matching. Then we design the LK strategy

by selecting two 0-matching edges, and do a DCJ operation. We expand the search

frontier by keeping all neighboring search solutions up until the search level L1. Then

we only examine and add the most promising neighbors to the search list until level

L2. The search is continued by the time when there is a neighbor solution yielding

a better median score. This solution is then accepted and with it a new search is

initiated from the scratch. The search will be terminated if there are no improvement

on the results as the search level limit has been reached and all possible neighbors

51

has been enumerated. If L1 = L2 = K, the algorithm is called K-OPT algorithm.

3.4.3 Use of Adequate Sub-graphs to Simplify Problem Space

There are two categories of vertices in the MBG. One with exactly one edge of each

edge type, is called “regular” vertices; another with less or more than one edges of

each edge type, is classified as “irregular” vertices. A sub-graph in the MBG that only

contains regular vertices, is defined as regular sub-graph [142]. By using the adequate

sub-graphs [146, 142], we can prove that they are still applicable for decomposing the

graph in Indel-Exemplar median problem.

Lemma 1 As long as the irregular vertices do not involve, regular sub-graphs are

applicable to decompose MBG.

Proof 5 If there are d number of vertices that contain duplicated edges in MBG, then

we can disambiguate the MBG by generating different sub-graphs that contain only

one of the duplicate edges (we call these sub-graphs disambiguate MBG, d-MBG). And

there are ∏
i<d deg(i) number of d-MBGs. Suppose a regular adequate sub-graph exists

in the MBG, then it must also exist in every d-MBG. Suppose there is a global 0-

matching solution for all d-MBG, then we can transform every d-MBG into completed

d-MBG (cd-MBG) by constructing the optimal completion [37] between 0-matching

and all the other 3 types of edges. After this step, the adequate sub-graphs exist in

every d-MBG still exist in every cd-MBG. Which means, we can use these adequate

sub-graphs to decompose cd-MBG for each median problem without losing accuracy.

3.4.4 Search Space Reduction Methods

The performance bottleneck with the median computation is, in the exhaustive search

step, for each search level, we need to consider O(2g)2 possible number of edge pairs,

52

Algorithm 5: DCJIndelExemMedian
Input: MBG G, Search Level L1 and L2
Output: 0-matching of G
Init search list L of size L1;1

Init 0-matching of G;2

currentLevel← 0 and Improved← true;3

while Improved = true do4

currentLevel← 0 and Improved← false;5

Insert G into L[0];6

while currentLevel < L2 do7

G′ ← pop from list L[currentLevel];8

if G′ improves the median score then9

G← G′;10

Improved← true and break ;11

if currentLevel < L1 then12

for x ∈ ∀ 0-matching pairs of G do13

G′ ← perform DCJ on G′ using x;14

if num pair(x) > δ then Insert G′ into L[currentLevel + 1]15

else16

G′ ← perform DCJ on G′ using x = argmax
x

num pair(x) ;17

if num pair(x) > δ then Insert G′ into L[currentLevel + 1]18

currentLevel← currentLevel + 1 ;19

return 0-matching of G;20

which is O((2g)2L1) in total. In traveling salesman problem (TSP), it’s cheap to

find the best neighbor, but for DCJ operations, to evaluate a neighbor, we need to

compute NP-hard DCJ-Indel-Exemplar distance, which makes this step extremely

expensive to conclude. Noticing that if we search neighbors on edges that are on the

same 0− i color altered connected component (0-i-comp), the DCJ-Indel-Exemplar

distance for genome 0 and genome i is more likely to reduce [152]. We can sort each

edge pair by how many 0-i-comp they share. Suppose the number of 0-i-comp that

an edge pair x share is num pair(x). When the algorithm is in the exhaustive search

step (currentLevel < L1), we set a threshold δ and select the edge pairs that satisfy:

num pair(x) > δ to add into the search list. When it comes to the recursive deepening

53

Figure 24: Median computation results for γ = φ = 0% and θ varies from 10% to
100%.

step; we select the edge pair that satisfy argmax
x

num pair(x) to be added into the

search list. This strategy has two merits, 1) some of the non-promising neighbor

solution is eliminated to reduce the search space. 2) the expensive evaluation step

which make a function call to DCJ-Indel-Exemplar distance is postponed to the time

when a solution is retrieved from the search list. The skeleton of the algorithm is

shown in Algorithm 5.

54

Figure 25: Median computation results for γ = φ = 5% and θ varies from 10% to
60%.

3.4.5 Experimental Results

3.4.5.1 Results for LK solver using DCJ-Indel-Exemplar distance

We simulated the median data of three genomes using the same simulation strategy

as in the distance simulation. In our experiments, each genome was “evolved” from a

seed genome, and they all have the same evolution rate (θ, γ and φ). We compared

the result of using LK algorithm with L1 = 2 and L2 = 3, and the K-OPT algorithm

of K = 2. We used the search space reduction methods and set δ = 2 and δ = 3

respectively.

To test the accuracy of our LK and K-OPT methods, we first set both γ and φ to

55

Figure 26: Methods for conducting median experiments.

0 and increased the mutation rate θ from 10% to 100%, so that each of the three

genomes has the same gene content. We ran the exact DCJ median solver (we use

the one in [152])to compare the time and accuracy of exact result with our heuristic

result. As for computational time, since the exact solver is highly optimized by using

streaming graph analytic methods, it’s 2 orders of magnitude faster than the JAVA

implementation by Xu [146]. In Fig 24, it shows the time and accuracy of our heuristic

compared with the exact result. We can see that when θ ≤ 60%, all results of the

LK and K-OPT methods are quite close to the exact solver. For parameter of δ = 2,

both LK and K-OPT methods can generate exact results for most of the cases. The

K-OPT method, comparing with the exact method, consumes almost the same time

when θ ≤ 60%. Unfortunately, the LK cost much more time, since it needs to examine

a much larger search space. The experimental process is shown in Figure 26.

As for the median results for unequal contents, we set both γ and φ to 5% and

increased the mutation (inversion) rate θ from 10% to 60%. We compared our result

with the accumulated distance of three genomes to their simulation seed, this method

can not show the accuracy our method (since we do not have an exact solver), but

can serve as the indicator of how close of our method was to the real evolution. Fig 25

shows the median results for unequal gene contents. We can see that when δ = 3, both

56

LK and K-OPT algorithms get results quite close to the real evolutionary distance,

while when δ = 3 the result are not ideal. However, though LK method is slightly

better than K-OPT, it takes orders of magnitude more time to conclude.

3.4.5.2 Results for LK solver using DCJ-Indel-CD distance

(a) γ = 0.05 and φ = 0.05 (b) γ = 0.1 and φ = 0.1

Figure 27: Median results for LK solver using DCJ-Indel-CD distance.

We use the same data as in the previous section, and the experimental results are

shown in Figure 27(a) and Figure 27(b). Since the implementation of DCJ-Indel-CD

median is more complicated than DCJ-Indel-Exemplar median. We use alternative

way to implement this algorithm, which is slower than DCJ-Indel-CD media algo-

rithm, therefore, we do not include the time result. We can see that in general, the

new implementation is quite close to the real result when γ = 0.05 and φ = 0.05 and

slightly worse than real result when γ = 0.1 and φ = 0.1.

57

Chapter IV

PHYLOGENY COMPUTATION

In this chapter, we describe the application of the previous mentioned distance and

median algorithms to the topology and gene order inference of the phylogenetic tree.

A software package called DCJUC (Phylogeny Inference using DCJ model to cope

with Unequal Content Genomes) is developed. We test the DCJUC using gene order

data. On simulated data set, our software can produce very curate trees using both

NJ and MP methods. And can construct ancestor genomes with good parsimony

score. Experiments on real gene order data (Yeast) show that our software package

can help biologists discovering more complicated evolutionary patterns.

4.1 Phylogenetic Tree Topology Inference

Based on the given distance model and the way to compute median genome. We

discuss the exhaustive way of inferring phylogenetic topology by using BnB algorithm.

The algorithm is divided into the following four steps. And an example is given in

Fig 28.

1) Initialize the root search node by selecting three species, and initialize a median

for these three species. Then use the Neighbor-joining (NJ) method to get the upper

bound ub and apply “twice around the tree” heuristic [100] to get the lower bound lb.

After initial bound computation, allocate the search list of size |ub− lb|. Then insert

the root search node into search list at position |lb − lb|. In Fig 28, root tree with

species labeled by A,B and C and the median species labeled by number 1 is shown.

58

B
A

C

B
A

C

B

A

C

D

D

B

A

D
C

STOP

1

1
2

1

2

1
2

Figure 28: Example of using branch and bound for phylogenetic tree topology infer-
ence.

2) Expand the active search nodes in the BnB search tree by stepwise addition, trying

to insert the next species into arbitrary branches of an incomplete phylogenetic tree.

Evaluate the new search nodes by its upper and lower bound. If the lower bound

of the new search node is larger than the global ub, abandon this search node.In

Fig 28, there are 3 insertion positions for species D, and if it was inserted into the

position between A and 1, its lower bound is larger than the global lb, which makes

the proceeding of its searching process terminated.

3) Insert the new search node into the search list by its lower bounds, if the upper

bound of the new search node is smaller than the global ub, set the global ub to this

upper bound. Continue searching by retrieving saved search nodes with the smallest

lower bound.

4) The program terminates when the upper bound meet the lower bound or there are

no active search nodes, and return the tree with smallest upper bound.

The above branch and bound algorithm can ensure finding the maximum parsimo-

nious tree given a specific objective function (distance model). However, this algo-

rithm grows exponentially with the number of input modern species, which makes it

59

impossible to derive a MP tree with only tens of species.

Many heuristics, therefore, is proposed to help reducing the search space while keeping

the accuracy of the tree as much as possible. There are multiple approaches to reduce

the search space. One approach to help scaling the problem is the quartet tree method,

which is relying on finding the optimal 4-leaf tree for each quartet. Once the quartet

information is acquired, it is used to build the whole tree. Another is originated

from searching on the “tree space” such as NNI, TBR and SPR. These methods

are in hope of finding a optimal phylogenetic tree by searching in a promising local

direction [151, 73] Many disk-covering methods (DCMs) are proposed as a divide

and conquer heuristic to reduce the candidate tree search space [74, 80]. The DCM

method can be viewed as two step process: 1) employ some methods to divide large

number of species into some overlapped or un-overlapped subgroups; 2) apply the

exhaustive search method to construct a sub-tree for each subgroup and merge these

trees by incorporating various consensus tree algorithms [79].

4.2 Applying REC-DCM-Eigen Method to Tree Topology
Inference

REC-DCM-Eigen Method [80] is one of the disk-covering method to reduce the tree

search space. It shown to be more accurate and faster than other disk-covering

methods. The basic idea, is to apply spectral partition method recursively to get

overlapped disks. Each disk has a subset of genomes, construct a sub-tree for each

disk. This process is shown in Algorithm 6.

After decomposition, these sub-trees are merged into a single phylogenetic tree using

some consensus tree method. The consensus tree method Figure 29. In DCJUC, we

do not use these consensus tree methods, because the consensus tree algorithms are

not the research topic of this paper and which usually can not generate binary trees.

60

Algorithm 6: DecomposeDisk
Input: Disk D
Output: Partitions
while size(D) > size threshold do1

Compute the similarity matrix (W) and the diagonal matrix (D) ;2

Compute the Laplacian matrix (L = D −W) ;3

Using Spectral method to compute the 2nd smallest eigenvalue of L and its4

eigenvector V ;
compute gap = V [last]− V [0] ;5

if gap > threshold then6

Return a non-overlapping disk decomposition ;7

else8

Return an overlapping disk decomposition ;9

10

We design and implemented an algorithm to merge two sub-trees that can result in

a unrooted binary tree.

Figure 29: Example of using consensus tree methods to merge subtrees.

Suppose there are two trees T1 and T2, their genome sets are Set(T1) and Set(T2),

the set of their overlapped genomes are Set(overlap(T1, T2)). If a tree is separated by

one of its edge into two sub genome sets, we define a sub-tree formed by one of the

sub genome sets as Ts and the according set as Sub(Ts). The algorithm that is used

61

Algorithm 7: MergeTwoTrees
Input: T1 and T2
Output: merged tree T0
if T1 ∩ T2 = Ø then1

T0 ←Merge(T1, T2);2

else3

T0 ←Merge(T1,Ø);4

while ∃Ts ∈ T2 and Ts 6∈ T1 do5

T0 ←Merge(T0, Ts);6

return T0;7

to merge two sub-trees can be described using the algorithm 7 and 8. The algorithm

can be generally described as a two step process, step 1, find a subtree Ts of T2 that

Set(overlap(T1, Ts)) = ø; step 2, merge Ts to T1, which can be realized by: 1) compute

the pairwise distance of all nodes in Ts and T1, find the vertex pair with the minimum

distance; 2) of all possible edge combinations of two selected vertices (maximum 9),

find the edges pair that yields the minimum median score after connecting these two

edges by inserting two internal nodes.

4.3 Ancestor Gene Order Reconstruction

Given the model tree topology, the approach for reconstruction of ancestor gene order

in BPAnalysis [22], GRAPPA [100] and GASTS [145] is basiclly iterative refinement,

which is a two step process: initialization and refinement. In the phylogeny topology

inference step, after the topology calculation, the gene orders of the internal nodes

(ancestor genome) have already been initiated. However, the potential of the iterative

refinement will not be putted into full play if the initial gene order are abounded local

optima. In this section, we only introduce Xu’s Generalized Adequate Sub-graph

(GAS) method for initialization [145], because it utilized the global information of

the tree and achieved the best results so far.

62

Algorithm 8: Merge
Input: T0 and Ts
Output: A merged tree T0
disMin = MAX INT ;1

for i← 1 to |Set(T0)| do2

for i← 1 to |Set(Ts)| do3

dis← DCJIndelExem(T0[i], Ts[j]) ;4

if dis > disMin then5

disMin← dis;6

min 0← i;7

min s← j;8

9

tScoreMin = MAX INT ;10

for i ∈ |neighbor(T0[min 0])| do11

for j ∈ |neighbor(Ts[min s])| do12

Ttmp ← Join(min 0, neighbor(T0[min 0])[i], ;13

min s, neighbor(Ts[min s])[j]) ;14

if Score(Ttmp) < tScoreMin then15

tScoreMin← Score(Ttmp);16

min to 0← neighbor(T0[min 0])[i];17

min to s← neighbor(Ts[min s])[j];18

19

Join(min 0,min to 0,min s,min to s) ;20

return T0;21

63

b

c

d

e
21

1,2

1,3

1,-2

1,2 weight: 1/3
1,3 weight: 1/3
1,-2 weight: 1

Figure 30: Example of GAS initialization of internal ancestor genomes, genome ‘2’
is the one to be initialized, the perspective of 2 is all the nodes in the BFS route
start from 2, and the directive nodes of the perspective are the nodes marked by gray
color. In this example, the adjacencies of gene 1 are shown of how they are chosen
and how they are weighted.

Fig 30 shows an example of how to initiate an internal ancestor genome. There

are two kinds of nodes in the figure, one is initialized nodes which is marked by

gray color, another is uninitialized nodes with white color. When initiating a node

(in figure denoted as number 1) that has two of its neighbor are initiated and one

uninitiated (denoted number 2). The nodes that in the breath first search (BFS) route

of the uninitiated neighbor are called the perspective of the neighbor. We use p to

represent the perspective. In the perspective, the initiated nodes are called directive

nodes, which we use g to represent these nodes. The adjacencies of the neighbor node

is initialized by a weighting scheme that actually summarize all the adjacencies of

directive nodes, and give each adjacency a weight using the equation (12). As the

equation shows, Ix(g) is set to 1 if adjacency x is existed in the directive node g,

otherwise 0. d is the depth of the directive node g, which is equal to number of edges

in the shortest path between neighbor node and the directive node. Fig 30 shows an

example of how adjacencies of gene 1 are set up using the weighting scheme.

(12)Wx =
∑
g∈p

Ix(g) · 3−d+1.

Once the adjacencies of all three neighbors are initialized, a new median of internal

node will be calculated. If the new median is better than the old one, it will replace

64

Table 2: The experiment result for phylogenetic tree construction
dataset

num
genes

max
κ

median
κ

Heuristic
tree length

Exact
tree length

Heuristic
time

Serial
time

Parallel
time

dros-5 9738 172 12 4395 4320 102.8 1449 394.5
dros-12 7332 234 60 5305 5244 547.1 7055 1933

the old median. And its neighbors if they are also internal nodes, because of having an

update on their neighbors, will also try to update their genome value. This iterative

refinement process, will terminate until convergence.

We modified the GAS method and reimplemented our initialization method. In our

implementation, we do not evaluate every adjacencies in the perspective, alternatively,

we introduced two threshold t1 and t2 for the selection of adjacencies. If the weight

of an adjacency is larger than t1, it’s selected, otherwise, if a vertex doesn’t have

an adjacency selected by the threshold t1, and its adjacency with the largest weight

is larger than t2, select this adjacency. If no adjacency of a vertex with score more

than t1 or t2, there will be no adjacency attached with the vertex, which means a

insertion/deletion happened in the initialized genome. In our work, we set t1 as 1.0

and t2 as 0.5.

4.4 Experimental Results

4.4.1 Applying Streaming Breakpoint Graph Analysis Methods on Real
Drosophila data for Phylogeny Inference

We plugged in our streaming breakpoint analysis based DCJ median algorithm into

the state of art phylogenetic tree construction package GASTS [145] which uses a

DCJ median heuristic [118], and conduct the experiment on the real Drosophila data

set [19, 127], we designed two data sets with the number of species increased. The first

data set is consisted of 5 species (which are Dmel, Dere, Dana, Dpse and Dwil), we

choose these 5 species because they have a long diameter in the phylogenetic relations.

65

And the second data set contains all of 12 species of Drosophila. We deleted all of

insertion, deletion and duplications to make each species has the same gene content,

and the 5 species data set has more genes than 12 species data set (see Table 35).

The experimental results are shown in Table 35, we do not use a model tree in our

experiment. We can see that during the process of constructing the phylogenetic tree,

most of the median problems are easy to solve (with a small κ). However, there are

a few median problems that is extremely hard to solve, which has a very large κ. For

these problems, we set the program’s threshold to search up to 1 million node then

return the local minimum. On both data sets, our DCJ median plug-in helps to find

a better phylogenetic tree which has smaller accumulated tree length, and comparing

to the heuristics based median solver our serial code is just about 10 times slower, by

utilizing the parallel algorithm, this gap reduces to about 4.

4.4.2 Phylogenetic Inference

For topology inference, we generate simulated data by the following steps: First we

generate phylogenetic model trees of three genomes by using a birth-death model [89].

Then, based on the model tree, we start from the root of the tree and set it to have

gene number 50. Following the branches of the tree, for each edge, the rate of DCJ

operations is set to 0.2× θ in which θ =
√

edge length
max length , the insertion/deletion rate is

set to 0.05 × θ and duplication rate is set to to 0.05 × θ. We apply this strategy to

generate two different types of trees which has the diameter of 1 × (gene num) and

2 × (gene num), we also generate trees that has uniform number of DCJ operations

of 5 and number of insertion/deletion and duplications set to 1. We set the spectral

partition parameters the same as in [80]. Since our tree merging methods generate

only binary unrooted trees, we use accuracy to evaluate trees which is total−FP
total

. We

test the phylogenetic inference methods using both NJ method with our distance

66

Figure 31: Methods for conducting phylogeny inference experiments.

estimator and MP method with our median calculator. The methods for conducting

the experiments is shown in Figure 31. The experimental results are shown in Fig 32.

As for the NJ results, we can see from the result that, for both diameters are 1 and

2, our algorithm achieve about 90% of accuracy with number of species ranging from

10 to 100. And for many cases, the accuracies are more than 95%. As for the MP

results, We can see from the result that, if the diameters are 1 and 2, our algorithm

achieve about 80% of accuracy when there are 10 species, and with the growth of the

number of species, the accuracy grows to about 85%. which is slightly worse than

NJ method, which is usually not the truth. This is mainly due to the reason that

we do not apply the consensus tree algorithm in our program. Which means, when

merging two overlapping disks, error is highly possible to be introduced. Another

reason might be because the median algorithm we used is a heuristic which might

have accumulated error during the tree construction process.

67

(a) accuracy for super-tree method

(b) Accuracy for Neighbor-Joining method

Figure 32: Results of tree topology construction accuracy, the x-axis is the number
of species and the y-axis is the accuracy.

4.4.3 Ancestor Order Reconstruction

The ancestor order reconstruction experiment use the same data as in the phyloge-

netic tree topology inference experiment. After simulating the tree, we accumulate

all the operations that happened in the path from root node to leaf nodes as the

total score of real evolutionary operations. Then we unroot the tree by detracting

operations happened along the edges between root node and its two children, and add

68

(a) Diameter=1

(b) Diameter=2

(c) Uniform edge length=5

Figure 33: Results for ancestor genome reconstruction.

the distance between two children. We then run experiments to compare the score

of tree reconstructed by our method with the real score. The experimental result is

69

shown in Fig 33, we can see from the figure that when the number of genomes is

small, the program will reconstruct ancestor genomes which might not be optimal

comparing with the real number of operations. There are two reasons, when the

number of species is small, there might not be enough global information to use as

to initiate the third median genome, the initialization are more tend to to be started

with a local optimum. Another reason is, when there are more species, the mutation

rate of the child species might be more than less species. At this time, there will be

more redundant operations just for which the distance estimator will under estimate

the real distance.

Figure 34: Example of the visualization of the phylogenetic tree using DCJUC with
the input of a subset of yeast genome data.

70

4.4.4 Real Tree Construction Example

We conduct our phylogenetic tree simulation experiment using real data from the

synthetic yeast genome project, Sc2.0 [50]. There are 44 genes in the genome data,

and there are in total 53 species. we did not use a model tree in our experiment and

construct the tree from the scratch.

The tree generated is shown in Fig 35. Along with the topology of the inferred

phylogenetic tree, DCJUC can also generate three numbers of each edges in the

phylogenetic tree. which are the (number of DCJ, number of insertions/deletions and

number of duplications). These information are shown in the Figure reftreethree. A

tree of subset of yeast genome is constructed using our software, and the visualized

result is generated. And together with the topology of the phylogenetic tree, can

help biologists better understand the rearrangement events that happened in the

evolutionary path.

71

JS725
JS629
JS733
JS717
JS714
JS708
JS724
JS617
JS710
JS604
JS605
JS736
JS719
JS712
JS734
JS612
JS571
JS715
JS623
JS738
JS610
JS621
JS718
JS716
JS622
JS628
JS614
JS729
JS626
JS726
JS601
JS705
JS727
JS611
JS624
JS618
JS607
JS606
JS608
JS711
JS739
JS627
JS625
JS706
JS735
JS721
JS728
JS713
JS723
JS730
JS737
JS707
JS603

Phylogenetic tree of yeast genomes

Figure 35: The phylogenetic tree of 53 species yeast genome. In the figure, each
edge of the tree has three numbers, which are number of DCJ operations, number of
insertion/deletion operations, and number of duplication operations.

72

Chapter V

USING EMERGING PARALLEL COMPUTING

ARCHITECTURE TO ACCELERATE PHYLOGENETIC

ALGORITHMS

5.1 Using GPGPU to Accelerate HMM based Sequence Align-
ment Algorithm

The Viterbi algorithm is the compute-intensive kernel in Hidden Markov Model

(HMM) based sequence alignment applications. In this chapter, we investigate ex-

tending several parallel methods, such as the wave-front and streaming methods for

the Smith-Waterman algorithm, to achieve a significant speed-up on a GPU. The

wave-front method can take advantage of the computing power of the GPU but it

cannot handle long sequences because of the physical GPU memory limit. On the

other hand, the streaming method can process long sequences but with increased

overhead due to the increased data transmission between CPU and GPU. To further

improve the performance on GPU, we propose a new tile-based parallel algorithm. We

take advantage of the homological segments to divide long sequences into many short

pieces and each piece pair (tile) can be fully held in the GPU ’s memory. By reorganiz-

ing the computational kernel of the Viterbi algorithm, the basic computing unit can

be divided into two parts: independent and dependent parts. All of the independent

parts are executed with a balanced load in an optimized coalesced memory-accessing

manner, which significantly improves the Viterbi algorithm’s performance on GPU.

73

Algorithm 9: DoWaveAlign
Input: seq temp, seq tar
Output: Aligned sequence
Initmatrix() ;1

InitHMM() ;2

for roundr ∈ all rounds do3

forall blockmn ∈ blocks of roundr in parallel do4

for stateSi ∈ three states of Blockmn do5

for stateSj ∈ three states of dependent block do6

//when Si is Match,the dependent block is Block(m-1)(n-1) ;7

// when Si is Delete, the dependent block is Blcok(m-1)n ;8

//when Si is Insert, the dependent block is Blcokm(n-1) ;9

calculateδ(mn, i) ;10

//δ(mn, i) stands for the forward variable for the ith state of11

Blockmn ;

seuqence = Traceback() ;12

return sequence;13

5.1.1 Wave-front Pattern to Implement the Viterbi Algorithm

The wave-front algorithm is a very important method used in a variety of scientific

applications. The computing procedure is similar to a frontier of a wave to fill a

matrix, where each block’s value in the matrix is calculated based on the values of

the previously-calculated blocks. On the left-hand side of Figure 36 we show the

wave-front structure for parallelizing the Viterbi algorithm. Since the value of each

block in the matrix is dependent on the left, upper, and upper-left blocks, in the

figure, blocks with the same color are put in the same parallel computing wave-front

round. The process for this wave-front algorithm is shown in Algorithm 9; we call it

a simple implementation of the wave-front algorithm.

The right-hand side of Figure 36 shows the data skewing strategy to implement this

wave-front pattern. This memory structure is useful because blocks in the same

parallelizing group are adjacent to each other (they are marked with same color in

Figure 37. In this way, because data accessed by neighbor threads are organized

74

Figure 36: Wave-front structure of Viterbi Algorithm for Biological Sequence Align-
ment. The left-hand side of the figure shows the wave-front process, and right-hand
side of the figure shows the memory data skewing to implement the wave-front algo-
rithm. For the detail of this method, please refer to [6].

Figure 37: Example of three functions in the simple wave-front implementation.

adjacent to each other, threads could access memory in a more efficient manner [106].

There are three functions in the simple implementation, Initmatrix (), InitHMM ()

and traceback (), and the process of these three functions are shown in Figure 37).

Initmatrix () sets up the dynamic programming matrix of the Viterbi algorithm for

Biological Sequence Alignment. We use the color red to mark the three initial states as

the termination for trace back, which can unify at each parallel round of computation.

InitHMM () sets up the probability model for template sequence. We use pseudo-

count methods to train the HMM in parallel. Traceback () is used to align the

template to target according to the value of the matrix calculated. This process is

executed on the GPU because the cost of transmitting the DP matrix back to main

memory is high if the trace back is done on the CPU.

75

5.1.2 Streaming Viterbi Algorithm for Biological Sequence Alignment

Figure 38: The HMM matrix is updated asynchronously at the host CPU and GPU
device. The solid and dashed arrows represent the asynchronous execution between
host CPU and GPU device.

A straightforward implementation of the wave-front pattern has one deficit – when the

sequence length is too long. Since the size of the Dynamic Programming (DP) matrix

is O(len t× len a), not all the data can be held in the GPU ’s memory at one time.

Here, we introduce a streaming method, which has already been used successfully

in parallel Smith-Waterman algorithms. Because the Viterbi algorithm for biological

sequence alignment has similar data dependencies, it is possible to apply this method

as well to the parallel Viterbi algorithm to solve the GPU memory limitation problem.

In CUDA, a stream is a sequence of instructions that execute in order. Different

streams, on the other hand, may execute their instructions asynchronously [106].

This feature ensures that the execution between the host and GPU device can be

overlapped with each other. In the implementation of the Smith-Waterman algorithm,

the sequence length supported by this mechanism is longer because only three rounds

are needed to place the sequence into the GPU ’s memory.

Figure 38 shows the process of computing the DP matrix for the streaming parallel

Viterbi algorithm. Only three rounds of communication are needed to load the matrix

76

Algorithm 10: DoStreamingAlign
Input: seq temp, seq tar
Output: Aligned sequence
Initmatrix() ;1

InitHMM() ;2

for roundr ∈ all rounds do3

stream[r] forall blockmn ∈ blocks of roundr in parallel do4

for stateSi ∈ three states of Blockmn do5

for stateSj ∈ three states of dependent block do6

calculateÎť(mn, i) ;7

stream[r] do: transfer groupg-1 back to host8

seuqence = Traceback() ;9

return sequence;10

block into the GPU memory and compute the appropriate kernel. The full DP matrix

is stored in the host memory. This mechanism needs the values of the other two rounds

to calculate the values of current round. When performing computation, data from

the round which had been previously processed, will be transferred back into the host

memory concurrently. Algorithm 10 describes this streaming approach. Note that

procedures marked with the same stream[r] will execute instructions independently.

5.1.3 Tile Based Method to Harness the Power of GPU

One drawback of the streaming Viterbi algorithm is its high dependency on the com-

putational resources of the host side, and the transition time between host and GPU

device cannot be neglected either. The streaming Viterbi algorithm requires ad-

ditional storage and communication bandwidth. Therefore, we introduce the new

tile-based method, which simplifies the computational model and also handles very

long sequences with less memory transmission.

The tile-based method can be described as follows: If a matrix can be fully loaded

into the GPU memory, do it; otherwise divide the large matrix into tiles to ensure

77

Figure 39: Using homological segments to divide long sequences.

Figure 40: Example of finding homological segment pairs and using them to divide
a large matrix into smaller, independent tiles. In the left-hand diagram, homological
sequences form small pieces and are aligned using the Dynamic Programming method,
and un-aligned homological tiles are marked with an “X”. In the right-hand diagram,
aligned tiles are used to divide large matrix into small sub-matrices.

that each tile fits in the GPU’s memory as a whole and then calculate the tiles one by

one or in parallel.

Cell-Swat [3] presents a tiling mechanism, but with this method, there are data de-

pendencies among each tile. We introduce the homological segments concept into

our tiling mechanism to eliminate the data dependency among different tiles. The

biological meaning of homological segments makes them serve as separators very well

(as shown in Fig. 6). To find homological segments, there are algorithms such as

Fast Fourier Transform (FFT) [81] based algorithms and k-mer based algorithms.

78

We choose a k-mer based method for based algorithms. We choose a k-mer based

method for segments are found, we use a dynamic programming algorithm to align

these segments and cut the long sequence from the middle of these homological seg-

ments, as shown in Figure 40. For the details of homological segments, please refer

to [48]. The process of finding homological segments and using them to divide inde-

pendent tiles is as follows:

1) Find all homological segments whose score exceeds the threshold.

2) Using a dynamic programming algorithm to align these homological segments,

ignoring those homological segments which are not aligned (such as in the left-hand

side of Figure 40, the homological segments which are not aligned are marked with

an “X”).

3) Using homological segments to divide the full dynamic programming matrix into

small tiles (marked with the dash area).

4) Calculate the tiles with the Viterbi algorithm.

5.1.4 Optimization Methods

Another deficiency of the wave-front Viterbi Algorithm for Biological Sequence Align-

ment is the unbalanced thread load; there are some idle threads at the beginning and

the end of the algorithm. We solve this problem by transforming the following for-

mula, which is used to calculate one block.

δt(j) = MAX1≤i≤N [δt−1aij(t)]bj(Ot)

= MAX1≤i≤Nδt−1[aij(t)]bj(Ot) 1 ≤ j ≤ N

(13)

In the transformed formula, the calculation of aij(t)bj(Ot) does not have any data

dependency; therefore, we can calculate aij(t)bj(Ot) initially and store the results in

79

a temporary memory.

To express this idea more clearly, we present this method in Figure 41. In our method,

we first perform the formula transformation. Before transforming the formula, the

inner computation of one block is tightly dependent. This is because the current round

is dependent on its previous rounds and only after the previous rounds have finished

can it start. After formula transformation, the calculation is divided into two parts,

the independent part and the dependent part. We collect all the independent parts

together and let them run in parallel (the first step). At this stage, the threads are load

balanced and the coalesced-memory optimization is employed. The dependent part

of the computation is moved to step two, and it uses the data previously computed

by the independent computation.

Figure 41: Thread load. The left side of this figure shows the wave-front Viterbi Al-
gorithm for Biological Sequence Alignment and right side shows how the transformed
formula can balance the thread load.

5.1.5 Experimental Results

The experiments are performed on the platform which has a dual-processor Intel

2.83GHz CPU with 4 GB memory and an NVIDIA Geforce 9800 GTX GPU with 8

80

streaming processors and 512MB of global memory. We tested using two operating

systems: Windows XP and Linux Ubuntu version 10. To focus on the algorithmic

efficiency in our study, we made two simplifications in our experiments, one is that

we use a pseudo count method to train the HMM, and another is that we neglected

the accuracy comparison with other methods and our parallel method has the same

accuracy with the serial method. We employ the automatic sequence-generating

program ROSE [42] to generate different test cases.

5.1.5.1 General Test

The general test was executed on four implementations of the Viterbi Algorithm for

Biological Sequence Alignment. The first one is the serial implementation; the second

is the simple wave-front implementation; the third is the streaming implementation;

the last one is our tile-based implementation.

We have compiled and run our test programs under four different versions. The first

is Windows-Debug; the second is Windows-Release; the third is Linux-Debug and the

last is Linux-release. For long sequences, the simple wave-front version cannot load

the entire dynamic programming matrix into the GPU memory. Therefore, we select

groups of sequences which have lengths under 1000 to test all of the versions. The

experimental results are shown in Table 3.

The results show that the best acceleration rate is achieved under the Windows-Debug

mode, and we can see that the speedup under debug mode is better than release

mode. This is because in the serial version, the compiler’s optimization methods

have a great effect on the manner of accessing memory; however, in CUDA, this is

not true. Because CUDA has a special hierarchy of memory structure and the access

time for different levels of the hierarchy greatly varies. For example, global memory

81

Seq-Length Execution Time (Second)/Speedup

serial simple
wave-front streaming tile-based

100

DW 0.73 0.37 1.97 0.38 1.92 0.28 2.61
RW 0.017 0.007 2.42 0.02 0.85 0.006 2.83
DL 0.063 0.008 7.87 0.023 2.74 0.007 9
RL 0.027 0.007 3.86 0.025 1.17 0.007 3.86

200

DW 2.34 0.59 6 0.44 5.32 0.59 6
RW 0.05 0.05 1.67 0.061 0.82 0.028 1.79
DL 0.324 0.055 9.26 0.066 4.98 0.029 11.17
RL 0.142 0.055 4.06 0.066 2.18 0.029 4.9

300

DW 5.89 0.42 14.02 0.46 12.8 0.45 13.7
RW 0.12 0.068 1.76 0.1 1.2 0.055 2.18
DL 0.647 0.07 9.26 0.112 5.78 0.054 11.98
RL 0.283 0.068 4.16 0.116 2.44 0.064 5.24

400

DW 9.93 0.60 19.86 0.62 19.1 0.45 22.07
RW 0.21 0.15 1.61 0.159 1.32 0.098 2.14
DL 1.112 0.12 9.27 0.2 5.56 0.099 11.23
RL 0.485 0.122 3.98 0.174 2.79 0.097 5

500

DW 15.9 0.54 29.44 0.54 29.44 0.62 30.58
RW 0.34 0.19 1.78 0.259 1.42 0.174 1.95
DL 1.783 0.198 9 0.262 6.8 0.155 11.5
RL 0.783 0.191 4.1 0.251 3.12 0.153 5.12

1000

DW 62.1 0.99 62.73 1.1 56.45 0.86 72.21
RW 1.34 0.64 2.09 0.686 1.95 0.554 2.42
DL 6.98 0.64 10.91 0.725 9.63 0.53 13.17
RL 3.07 0.635 4.83 0.62 4.952 0.512 6.0

Table 3: Performance comparison of for different Viterbi implementations. In the
table, the first line of a group is the results for Debug-Windows mode (DW), second
line, Release Windows (RW), third line, Debug Linux (DL), Fourth line, Release
Linux (RL).

82

has an access time of about 500 cycles and the on-chip memory such as a register of

only 1 cycle. Due to the reason that CUDA does not provide a good mechanism to

optimize memory accesses at a compiler level, the speedup in Debug mode is better

than in Release mode. Also we can see that among three versions of the algorithm,

the tile-based method is the best and the streaming algorithm is the worst. In fact,

since the length of the test sequences is not long, the only difference between simple-

and tile-based algorithms is that tile-based algorithm introduces some optimization

methods. The results show that our optimization methods are effective.

5.1.5.2 Test of Streaming Viterbi Algorithm

Figure 42: Results of the test on streaming Viterbi algorithm implementation for
Biological Sequence Alignment.

Since there is data communicated between host and device memory, we must con-

sider the communication cost. Here we test the time composed of computing and

data transfer of the streaming implementation. The results are shown in Fig. 9. In

Figure 42, we see that the longer the sequence is, the less percentage of time con-

sumed in data transfer. This means that the computation and communication can

be overlapped with each other better when the sequence length is longer. However,

83

these time of communication still can not be neglected.

5.1.5.3 Test of Tile-based Viterbi Algorithm

The selected homological segments and the size of the sub-sequence will significantly

affect the algorithm’s efficiency. We implement the serial algorithm of finding ho-

mological segments in Java. In our implementation, the length of the sub-sequences

partitioned by homological segments is decided by the following three factors:

1) K-mer window length: When this is larger, the homological segment found will be

better; however, this also means more computation and storage cost.

2) Homological-segment window length: With the growth of the homological-segment

window length, there will be less homological segments detected, which means the

sub-sequence length will be longer.

3) Homological-segment threshold: This threshold is used to score a segment of a

sequence. The larger the threshold is, the fewer the number of homological segments

will be detected.

In our test, we focus on how the average length of the sub-sequence will affect the final

performance. Our tests are divided into two parts, the time of computing homological

segments and the time of sequence alignment using our tile-based algorithm. The

test results are shown in Figure 43. The time for computing homological segments is

linearly increased. We do not include the time for computing homological segments

in Figure 43 because we want to show the time changes for computing sub sequences

separately.

From Figure 43, we see that with the growth of the average sequence length, the

number of the segments decreases and the time for sequence alignment increases

(there are some waves in the figure; this is because of the variation of sequence length

84

Figure 43: Results of testing the tile-based Viterbi Algorithm for Biological Sequence
Alignment. Here we include only the time for computing sub sequences

for the given average length). We select the parameters, which are used to decide

how to partition the sequence length of average length, to keep the residues length

at 200. This is because when the average sequence length exceeds 200, the time of

sequence alignment will increase much faster.

5.1.5.4 Testing of Long Sequence

The last test shows the comparison of streaming and tile-based implementations on

longer sequences. For the running time of tile-based algorithm, we included both the

time for computing tiles and the time for the parallelized Viterbi algorithm. Figure 44

shows that the tile-based implementation is an order of magnitude faster than the

streaming implementation, because it only needs to calculate a portion of the dynamic

programming matrix. In addition, the time growth of the tile-based implementation is

lower. From Figure 44, we see that as the residue length increases from 2000 to 5000,

the time for tile-based method increases only about 2 seconds under both the Linux

85

Figure 44: Results of testing on longer sequences, upper graph shows the results in
Release mode and lower graph shows the results in Debug mode.

and Windows system, and the streaming-based algorithm grows at least 8 seconds.

As the sequence length increases, the growth of the calculation time needed by our

tile-based method is very low.

There are two special effects in the figure to explain. One is that for the tile-based

method, the performance under Windows is faster than the Linux system, and it

is different for streaming algorithm. The other is that the time for the streaming

algorithm under the Windows system grows like a ladder. Both of these effects are

because of the fact that, in Windows, the kernel initiated by CUDA cannot run too

long consistently. Thus, we added some code to allow the kernel to sleep for some

time for every 1000 kernel initiations.

86

5.2 Parallelizing Branch and Bound Algorithms

5.2.1 Parallel Speedup for BnB DCJ median algorithm

Since there are a lot of articles about parallel branch and bound algorithms [13],

we will not dive into detail about the framework of the parallel algorithm. Here we

discuss two load balancing strategies that we use in our shared memory multi-thread

parallel algorithm. The first strategy is, when a thread has finished its work, it will

check the intermediate files of other threads with the maximal upper bound value, if

such files exits, it can “steal” the tasks of other threads by just renaming the files to its

own, this strategy has very little overhead of synchronization. The second strategy is,

when there is no files left of other threads, instead of “stealing” other threads’ work,

this thread just kill itself, and notify one of other threads with maximal expected

work to do to fork their jobs to a new thread to continue searching.

(a) load balancing on file (b) load balancing on job queue

Figure 45: Explanations of two different load balancing strategy.

We implement our parallel algorithm by using JAVA threads, and we perform the

experiment on the same data set as we used in testing the streaming breakpoint graph

method to solve the DCJ median problem, the speedup is averaged over 10 cases.

We can see from Figure 46(a) that our algorithm achieved very good parallel speed

up, especially on large data search space problems. For the circular chromosome,

when κ = 80, the algorithm scales well up to 8 threads, and when κ = 90 we can

achieve speed up close to 10 when using 16 threads. Surprisingly, we can see even

87

super-linear speed-ups for some cases such when κ = 100 and thread number is 16.

The observation of super-linear speed up is due to the reduce of the search space

when multiple thread is running. As for linear chromosomes, because the data we

generated has larger search space and they are more evenly distributed, we can see

that for all three kernel sizes, the algorithm scales well.

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14 16

sp
ee

d
up

threads

parallel speed up

80_cir
90_cir
100_cir
80_lin
90_lin
100_lin

(a) parallel speed up

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14 16
ef

fic
ie

nc
y

va
lu

e

threads

parallel efficiency

80_cir
90_cir
100_cir
80_lin
90_lin
100_lin

(b) parallel efficiency

Figure 46: Parallel speed up.

Figure 46(b) shows the normalized efficiency for our parallel program which is calcu-

lated by Ts

Tp
× Wp

Ws
of which Ts/Tp is the serial/parallel execution time and Ws/Wp is

the number of total processed nodes (total work) for serial/parallel program. In gen-

eral, when increasing the number of threads, the parallel efficiency is reducing. There

might be multiple reasons: 1) there is large overhead for Java thread scheduling, 2)

the memory allocated is increasing with the number of threads growing, 3) there are

overhead for synchronization when threads are doing load balancing.

5.2.2 Knowledge Learn from the Parallelization of ∆-Stepping Algorithm

∆-stepping algorithm is the algorithm that is used to solve the single source shortest

path problem (SSSP) [97]. Given a graph with V vertices and E edges. Traditionally

the Djkstra algorithm has the complexity of O(V logV) which is optimial for this

88

problem, but it has no parallelism. And Belman-ford algorithm has the complexity

of O(V 2) while it has the parallelism of O(V). ∆-stepping is the algorithm that take

the advantage of both of these two algorithms, which trade off time complexity over

parallelism. We can see it as a bucket implementation of Dijkstra’s algorithm, and

the parallelism is at the step of processing buckets in parallel.

Figure 47: Results of the test on streaming Viterbi algorithm implementation for
Biological Sequence Alignment.

Figure 48: Results of the test on streaming Viterbi algorithm implementation for
Biological Sequence Alignment.

In [95], the authors described the way of designing and implementing parallel ∆-

stepping algorithm on Cray-XMT system. Following the similar strategy, we imple-

ment a parallel ∆-stepping on Intel’s Sandy bridge system, with additional optimiza-

tion methods as: 1) Since there is contentions when multiple threads are relaxing

89

edges that has the same end vertex. We use parallel partition method, partition

edges to request array into 256 bins, and process the bins in parallel. 2) We use the

bit array to store the buckets to save memory usage.

We conduct the experiment using different data sets generated by Graph500 RMAT

data generator [32] which has the data size of V = 220 to 224 with edge factor of

16. And the experimental results are shown in Figure 47 and Figure 48. We can

see that in general there is an overhead of the same time spent on the computation

of index and the time to put the vertices back to the right position. The lesson we

learned from the parallel ∆-stepping is that, we can think irregular graph problems

as “bucket” problems and achieve parallelism on processing the bucket. This strategy

has been widely applied to other methods such as BFS. The question is, can we

apply the bucket based method to the parallelization of BnB problems?

5.2.3 Design A Bucket Processing Based Parallel BnB Algorithm

With the advent of many core systems, the implementation of parallel BnB algorithm

becomes more and more complicated. Meanwhile, because the traditional way of

Parallelizing BnB algorithm requires a lot of load balancing, which is almost not

affordable when there are hundreds of threads running at the different phases of

BnB search. The lessons we learn from transferring irregular graph problems for

SSSP into parallel bucket processing is that, at the extra cost of maintaining the

bucket index, we can get the elegance of easy to program and scalability. These two

features are very important because current many core architecture are based on the

Single Instruction Multiple Data (SIMD). Which requires simplicity on the logic to

process different data and big data level parallelism. Processing on a bucket can

satisfy this requirement.

90

Algorithm 11: DoBucketBnB
Input: branch and bound problem
Output: branch and bound solution
Instance[num t] = Init instances() ;1

bnb seq(instance[0]) ;2

upper bound = instance[0].upper bound ;3

lower bound = instance[0].lower bound ;4

list = init search list(upper bound, lower bound) ;5

count[num t][size bucket] ;6

start[num t][size bucket] ;7

eliminate[num t][MAX BUCK SIZE] ;8

while upper bound > lower bound do9

if list.num[current score] > 0 then10

//first step to calculate indexes ;11

ComputePartition(list, Instance, count, start, eliminate) ;12

//second step to calculate the start position of each thread at each bucket13

//which is based on prefix sum method. ;
calculate start position(count, start) ;14

//third step to put the intermediate results generated by ;15

//this iteration to the right bucket in the search list ;16

ReorderList(list, Instance, start, eliminate) ;17

else18

increase lower bound or decrease upper bound ;19

return solution with the best upper/lower bound;20

In this section, we propose the design of a “bucket” based parallel BnB algorithm

which is easy to implement and able to scale well to hundreds of threads. The basic

idea behind this algorithm is, when we perform BnB search we put the intermediate

results into different buckets based on its upper or lower bound. And we continue

search by always picking up search nodes from the best (position at max upper bound

or min lower bound) position, we call this bucket the best bucket. The idea is, we can

process all the elements from the best bucket in parallel. And put the intermediate

results into the destination bucket in parallel as well.

Challenges attached with this methods are, to begin with, to put the intermediate

results into different buckets we need to know the exact index of which result node to

91

Algorithm 12: ComputePartition
Input: list, Instance, count, start, eliminate
Output: count, start, eliminate
forall search nodes encode[i] ∈ best bucket in parallel do1

tid = get thread id() ;2

to search node(Instance[tid], encode[i]) ;3

num branch = Instance[tid].get branches(branch code) ;4

local count = 0 ;5

for j ∈ num branch do6

Instance[tid].to branch(j, branch code) ;7

if Instance[tid]’s expect best score is worse than current best score then8

eliminate[tid][local count++] = false ;9

else10

eliminate[tid][local count++] = true ;11

count[tid][Instance[tid].bucket pos]++ ;12

Instance[tid].from branch(j, branch code) ;13

be reside, otherwise, there will be contentions. Another problem is, the intermediate

result may have the same destine bucket as the current best bucket, obviously reading

and writing of the same position at the same time will cause data inconsistency. Last

but not least, when we are processing a bucket, there might be the same intermediate

results that is not qualified to be putted into a specific bucket because its sub-problems

have been trimmed by bounds. Or, some intermediate results might yield better

bounds. How to screen these unnecessary results and update these newly added

information is another issue we need to tackle.

To solve these problems, firstly, we need to address the way to handle the computation

of the indexes of different threads in the bucket. We use the parallel partition method

to partition the work on the best bucket evenly to different threads, then each threads

compute how much intermediate search nodes they will generate. After that, the work

for each independent threads will be used to calculate a global index for each thread

of the range of the index in every bucket range from global lower bound to global

upper bound. Secondly, when the intermediate search node is going to be putted into

92

Algorithm 13: ReorderList
Input: list, Instance, start, eliminate
Output: reordered list
forall search nodes encode[i] ∈ best bucket in parallel do1

tid = get thread id() ;2

to search node(Instance[tid], encode[i]) ;3

num branch = Instance[tid].get branches(branch code) ;4

local count = 0 ;5

for j ∈ num branch do6

Instance[tid].to branch(j, branch code) ;7

if eliminate[tid][local count+ +] == false then8

if Instance[tid].buck id != current bucket then9

list.add(Instance[tid].buck id, start[tid][Instance[tid].buck id]++) ;10

else11

list.add(temporary buck id, start[tid][Instance[tid].buck id]++) ;12

if Instance[tid]’s evaluation score is better than current best score then13

update upper or lower bound ;14

Instance[tid].from branch(j, branch code) ;15

copy data from temporary bucket to current bucket ;16

the current best bucket, we put it into a separate temporary bucket first. After all

the nodes in current bucket have been processed, all the intermediate nodes in the

temporary bucket will be copied back. Lastly, to decide which intermediate search

node to be eliminated during the bucket processing, we only use the current global

upper or lower bound, no matter the number has been changed or not. To achieve

this purpose, we add an additional bit array to keep track of which element has been

eliminated. The detail of the method is shown in Algorithm 11, Algorithm 12 and

Algorithm 13. And an example of using bucket based method to do parallel branch

and bound search is as Figure 49 shows.

93

Figure 49: An example of using bucket based method to do parallel branch and
bound search.

5.2.4 Algorithm Analysis

In this section, we will model the performance of two parallel BnB methods. Suppose

the search space does not change when applying parallel methods. And for a sub-

problem, it requires m amount of memory to store the information of this problem,

and it takes c amount of computation to get the bound of this problem. If using

bucket processing based algorithm, it requires m′ amount of memory to store the

bucket information of which bucket this nodes will be stored. If using thread based

algorithm, there are o amount of overhead for load balancing. If we are using p number

of threads, theoretically, the parallel model will be as equation 14 and equation 15

shows.

(14)
Tb = m+ c+m′

p

94

(15)
Tt = m+ c

p
+ o

We can see that there are two factors that affect the comparison of the two algorithms.

The first factor is how intensive the computation is comparing with the memory cost.

If the program is computational intensive, c will become the dominant part, and Tb

and Tt will be almost the same. Another factor is how much does o cost for thread

based method, since the load balancing method is not parallelizable and if o is large,

it will strongly affect the time Tt.

5.2.5 Design and Implementation of OPT-Kit

OPT-Kit stands for Optimization Tool-kit for Parallelizing Discrete Combinatorial

Problems in Emerging Platforms. It’s design following such principles: 1) The user

only need to consider how a instance is constructed, evaluated and branched, and

all the other factors including the branch and bound strategy, parallelization will be

hidden. 2) The polymorphism should not affect performance too much especially for

scalability.

We implemented the bucket BnB algorithm using CPP and implemented two algo-

rithms on top of it. The first algorithm is the well-known knapsack problem, and the

second problem is the DCJ-Indel-CD distance algorithm. We run experiment using

a machine that has two Intel(R) Xeon(R) CPU X5680 @ 3.33GHz with 12 cores

and Intel Xeon Phi with 60 cores. We compare our parallel bucket BnB algorithm

with the traditional thread based method which is mentioned at the beginning of this

chapter.

95

The experimental results for the parallelization on CPU for knapsack problem and

DCJ-Indel-CD distance problem are shown in Figure 50. We can see that for the knap-

sack problem both thread based method out performed our bucket method. This is

mainly due to the reason that the elemental computation (such as the evaluation and

branch process) is cheap, and manipulating the search list becomes the dominate part.

Since in the bucket based method, there is overhead of computing the indexes which

is almost the same time cost as the following reorder process, and in knapsack prob-

lem, this deficiency will be exemplified. And for DCJ-Indel-CD problem elemental

computation is expensive, and the overhead for computing indexes will be negligible,

under such circumstance we can see that our bucket based method performed better

than thread based method because thread method spend much of the time for load

balancing. And we can see that our methods scales pretty well.

The experimental results for Intel’s MIC Xeon Phi is also shown in Figure 50. We

can see that in general, when running jobs on Intel’s MIC, for the knapsack problem,

the difference between thread based method and bucket based method is very close,

while for the DCJ-Indel-CD problem, the bucket based method outperform the thread

based method. To be specific, the bucket based method scales well on both of the

problems except for the use of 128 threads in DCJ-Indel-CD problem, which is mainly

due to the lack of work to do. And for thread based method, it stops scaling for the

DCJ-Indel-CD problem when thread number is more than 16. As for the bandwidth,

we can see that for the knapsack problem, the bucket based method achieved a better

bandwidth while in the DCJ-Indel-CD problem, it perform better than thread based

method until the thread number exceeds 64.

In general, for the problem with more memory intensive, the bucket based method

96

performs slightly worse than thread based method while for the computational inten-

sive problem, the bucket based method outperform the thread based method. Con-

sidering that the bucket based method is much simpler than thread based method,

it is promising to extend this method to the more complicated multi-node message

passing parallelism.

(a) parallel speed up CPU knapsack (b) parallel speed up CPU DCJ-Indel-CD distance

(c) parallel speed up MIC knapsack (d) parallel speed up MIC DCJ-Indel-CD distance

Figure 50: Parallel speed up for knapsack problem and DCJ-Indel-CD distance
problem on Intel’s Sandy Bridge and MIC system.

97

Chapter VI

CONCLUSION AND FUTURE WORK

In this thesis we described the design and implementation of DCJUC which can help

biologist infer the phylogenetic topology and reconstruct the ancestor gene order.

We select the DCJ-Indel-Exemplar distance as the tool to estimate the dissimilarity

between genomes, and adapt the Lin-Kernighan heuristic to solve the DCJ median

problem with genomes of unequal contents. We proved that the use of the adequate

sub-graphs is still sound with BPG of which not every vertex is 3-regular, therefore

the search space can be dramatically reduced. We implemented the tree construc-

tion software using our new median solver, and applied the spectral partition method

to help quickly build the tree. We incorporated the generalized adequate sub-graph

(GAS) method to initialize the ancestor gene orders when the topology of the model

tree is known. Nevertheless, there are still sheer amount of work to be done. To begin

with, the divide and conquer method can be introduced in the distance computation

for reducing the search space. Secondly, a good branch and bound strategy is needed

to conquer the difficulty of triangular inequality and ambiguation problems. If these

problems can not be solved, a more search space efficient and memory efficient ver-

sion of LK algorithm is yet to be implemented. Thirdly, various of consensus tree

algorithms are needed to help improve the phylogeny inference accuracy. Last but

not the least, to deal with high resolution data, more algorithm engineering methods

and high performance computing technologies are needed to improve the software’s

efficiency.

98

We also described the design and implementation of OPT-Kit which can help re-

searchers to implement parallel branch and bound algorithms without paying too

much attention to the parallel process and afraid of using new parallel architec-

tures. The OPT-Kit scales well on both the traditional Intel’s CPU architecture

and emerging many core architectures, Which incorporated two parallel branch and

bound methods such as thread based method and bucket processing based method.

There are numorous things to be done in the future. The first thing is we need to

port our algorithm into GPU to see how it performs. The second thing to do is to

introduce the offload method into our software, because our software is limited by

the size of the memory and the new many-core systems is short of memory. The

third thing to do is extend our method to the PGAS programming model to see how

it performed in the multi-node machine. The fourth thing to do is to add the I/O

algorithm into our package so that it can process problems in a much larger scale.

Last but not the least, since most of the combinatorial optimization problems can be

mapped to linear programming problems, we should make our package support LP

functions.

99

REFERENCES

[1] “Performance evaluation of load distribution strategies in parallel branch and
bound computations,” in in Parallel Branch and Bound Computations Proc.
7th Symposium on Parallel and Distributed Processing (SPDP’95), pp. 402–
405, Press, 1995.

[2] 2006 International Conference on Parallel Processing (ICPP 2006), 14-18 Au-
gust 2006, Columbus, Ohio, USA, IEEE Computer Society, 2006.

[3] Aji, A. M., chun Feng, W., Blagojevic, F., and Nikolopoulos, D. S.,
“Cell-swat: modeling and scheduling wavefront computations on the cell broad-
band engine.,” in Conf. Computing Frontiers (Ramirez, A., Bilardi, G., and
Gschwind, M., eds.), pp. 13–22, ACM, 2008.

[4] Alekseyev, M. A. and Pevzner, P. A., “Breakpoint graphs and ancestral
genome reconstructions,” Genome Res, vol. 19(5), pp. 943-57, 2009, May.

[5] Alekseyev, M. A. and Pevzner, P. A., “Colored de bruijn graphs and
genome halving problem,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 3, pp. 98–107, 2006.

[6] Alekseyev, M. A. and Pevzner, P. A., “Are there rearrangement hotspots
in the human genome?,” PLoS Computational Biology, vol. 3, no. 11, 2007.

[7] Alekseyev, M. A. and Pevzner, P. A., “Multi-break rearrangements and
chromosomal evolution,” Theor. Comput. Sci., vol. 395, pp. 193–202, Apr. 2008.

[8] Alexandrov, V. N., Lees, M., Krzhizhanovskaya, V. V., Dongarra,
J., and Sloot, P. M. A., eds., Proceedings of the International Conference on
Computational Science, ICCS 2013, Barcelona, Spain, 5-7 June, 2013, vol. 18
of Procedia Computer Science, Elsevier, 2013.

[9] Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., and Vialette, S.,
“A pseudo-boolean programming approach for computing the breakpoint dis-
tance between two genomes with duplicate genes,” in Proceedings of the 2007
international conference on Comparative genomics, RECOMB-CG’07, (Berlin,
Heidelberg), pp. 16–29, Springer-Verlag, 2007.

[10] Angibaud, S., Fertin, G., Rusu, I., ThÃľvenin, A., and Vialette, S.,
“On the approximability of comparing genomes with duplicates.,” J. Graph
Algorithms Appl., vol. 13, no. 1, pp. 19–53, 2009.

100

[11] Angibaud, S., Fertin, G., Rusu, I., and Vialette, S., “How pseudo-
boolean programming can help genome rearrangement distance computation,”
in in Comparative Genomics, RECOMB 2006 International Workshop, RCG
2006, ser. Lecture Notes in, pp. 75–86, springer, 2006.

[12] Bader, D. A., Chandu, V. P., and Yan, M., “Exactmp: An efficient parallel
exact solver for phylogenetic tree reconstruction using maximum parsimony,”
in ICPP [2], pp. 65–73.

[13] Bader, D. A., Hart, W. E., and Phillips, C. A., “Chapter 5 parallel
algorithm design for branch and bound,” in Tutorials on Emerging Methodolo-
gies and Applications in Operations Research (Greenberg, H., ed.), Oxford:
Kluwer Academic Press, 2004.

[14] Bader, D. A., Moret, B. M. E., and Yan, M., “A linear-time algorithm
for computing inversion distance between signed permutations with an experi-
mental study,” Journal of Computational Biology, vol. 8, pp. 483–491, 2001.

[15] Bafna, V. and Pevzner, P. A., “Sorting by reversals: Genome rearrange-
ments in plant organelles and evolutionary history of x chromosome,” Mol. Biol.
and Evol, vol. 12, pp. 239–246, 1995.

[16] Bergeron, A., Mixtacki, J., and Stoye, J., “On sorting by translocations,”
in Journal of Computational Biology, pp. 615–629, Springer, 2005.

[17] Bergeron, A., Mixtacki, J., and Stoye, J., “A unifying view of genome
rearrangements,” in WABI 2006. LNCS (LNBI), pp. 163–173, Springer, 2006.

[18] Bertrand, D., Gagnon, Y., Blanchette, M., and El-Mabrouk, N.,
“Reconstruction of ancestral genome subject to whole genome duplication, spe-
ciation, rearrangement and loss,” in Proceedings of the 10th international con-
ference on Algorithms in bioinformatics, WABI’10, (Berlin, Heidelberg), pp. 78–
89, Springer-Verlag, 2010.

[19] Bhutkar, A., Schaeffer, S. W., Russo, S. M., Xu, M., Smith, T. F.,
and Gelbart, W. M., “Chromosomal rearrangement inferred from compar-
isons of 12 Drosophila genomes.,” Genetics, vol. 179, no. 3, pp. 1657–80, 2008.

[20] Blanchette, M., Bourque, G., and Sankoff, D., “Breakpoint phyloge-
nies,” Genome Informatics, pp. 25–34, 1997.

[21] Blin, G., Chauve, C., and Fertin, G., “The breakpoint distance for signed
sequences,” in Proc. CompBioNets 2004, vol. Text in Algorithms, Volume 3,
pp. 3–16, King’s College London, 2004.

101

[22] Bourque, G. and Pevzner, P. A., “Genome-Scale Evolution: Reconstruct-
ing Gene Orders in the Ancestral Species,” Genome Res., vol. 12, no. 1, pp. 26–
36, 2002.

[23] Bourque, G. and Pevzner, P. A., “Genome-Scale Evolution: Reconstruct-
ing Gene Orders in the Ancestral Species,” Genome Research, vol. 12, pp. 26–36,
Jan. 2002.

[24] Bourque, G., Yacef, Y., and El-Mabrouk, N., “Maximizing synteny
blocks to identify ancestral homologs,” in Proceedings of the 2005 international
conference on Comparative Genomics, RCG’05, (Berlin, Heidelberg), pp. 21–34,
Springer-Verlag, 2005.

[25] Braga, M. D. V., Willing, E., and Stoye, J., “Genomic distance with dcj
and indels,” in Proceedings of the 10th international conference on Algorithms
in bioinformatics, WABI’10, (Berlin, Heidelberg), pp. 90–101, Springer-Verlag,
2010.

[26] Brown, M., Hughey, R., Krogh, A., Mian, I. S., Sjolander, K., and
Haussler, D., “Using dirichlet mixture priors to derive hidden markov models
for protein families.,” in ISMB (Hunter, L., Searls, D. B., and Shavlik,
J. W., eds.), pp. 47–55, AAAI, 1993.

[27] Bryant, D., “The complexity of calculating exemplar distances,” in Compar-
ative Genomics (Sankoff, D. and Nadeau, J., eds.), Kluwer, 2001.

[28] Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Hous-
ton, M., and Hanrahan, P., “Brook for gpus: stream computing on graphics
hardware,” ACM Trans. Graph., vol. 23, pp. 777–786, Aug. 2004.

[29] Budiu, M., Delling, D., and Werneck, R. F., “Dryadopt: Branch-and-
bound on distributed data-parallel execution engines,” in Proceedings of the
2011 IEEE International Parallel & Distributed Processing Symposium, IPDPS
’11, (Washington, DC, USA), pp. 1278–1289, IEEE Computer Society, 2011.

[30] Caprara, A., “The reversal median problem,” INFORMS Journal on Com-
puting, vol. 15, 2003.

[31] Chauve, C., Fertin, G., Rizzi, R., and Vialette, S., “Genomes contain-
ing duplicates are hard to compare,” in Proc Int. Workshop on Bioinformat-
ics Research and Applications (IWBRA), vol. 3992 of LNCS, (Reading, UK),
p. 783ÃćâĆňâĂĲ790, Springer-Verlag, 2006.

[32] Checconi, F. and Petrini, F., “Massive data analytics: The graph 500 on
ibm blue gene/q,” IBM Journal of Research and Development, vol. 57, no. 1/2,
p. 10, 2013.

102

[33] Chen, Z., Fu, B., and Zhu, B., “The approximability of the exemplar break-
point distance problem.,” in AAIM (Cheng, S.-W. and Poon, C. K., eds.),
vol. 4041 of Lecture Notes in Computer Science, pp. 291–302, Springer, 2006.

[34] Chowdhury, S. A., Shackney, S., Heselmeyer-Haddad, K., Ried, T.,
Schaffer, A. A., and Schwartz, R., “Phylogenetic analysis of multiprobe
fluorescence in situ hybridization data from tumor cell populations.,” Bioinfor-
matics, vol. 29, no. 13, pp. 189–198, 2013.

[35] Ciccarelli, F. and Miklós, I., eds., Comparative Genomics, International
Workshop, RECOMB-CG 2009, Budapest, Hungary, September 27-29, 2009.
Proceedings, vol. 5817 of Lecture Notes in Computer Science, Springer, 2009.

[36] Clark., A., “Drosophila 12 genomes consortium 2007 evolution of genes and
genomes on the drosophila phylogeny,” Nature, vol. 450: 203-218, 2007.

[37] Compeau, P. E. C., “A simplified view of dcj-indel distance,” in Proceedings
of the 12th international conference on Algorithms in Bioinformatics, WABI’12,
(Berlin, Heidelberg), pp. 365–377, Springer-Verlag, 2012.

[38] Crainic, T., Gendron, B., and Centre for Research on Trans-
portation (Montréal, Q., Parallel Branch-and-bound Algorithms : Survey
and Synthesis. Publication (Centre for Research on Transportation (Montréal,
Québec))), Centre for Research on Transportation = Centre de recherche sur
les transports, 1993.

[39] Cunial, F. and Apostolico, A., “Phylogeny construction with rigid gapped
motifs,” Journal of Computational Biology, vol. 19, no. 7, pp. 911–927, 2012.

[40] da Silva, P. H., Braga, M. D. V., Machado, R., and Dantas, S.,
“Dcj-indel distance with distinct operation costs,” in Proceedings of the 12th
international conference on Algorithms in Bioinformatics, WABI’12, (Berlin,
Heidelberg), pp. 378–390, Springer-Verlag, 2012.

[41] Dayhoff, M. O. and Schwartz, R. M., “Chapter 22: A model of evo-
lutionary change in proteins,” in in Atlas of Protein Sequence and Structure,
1978.

[42] Der, F., Informationstechnik, A., Stoye, J., Evers, D., Meyer, F.,
Herausgeber, I., Giegerich, R., Knoll, A., Ladkin, P., Ritter, H.,
Sagerer, G., and Wachsmuth, I., “Rose: Generating sequence families,”
1997.

[43] Djerrah, A., Cun, B. L., Cung, V.-D., and Roucairol, C., “Bob++:
Framework for solving optimization problems with branch-and-bound meth-
ods.,” in HPDC, pp. 369–370, IEEE, 2006.

103

[44] Do, C. B., Mahabhashyam, M. S. P., Brudno, M., and Batzoglou,
S., “Probcons: Probabilistic consistency-based multiple sequence alignment,”
Genome Res, vol. 15, pp. 330–340, 2005.

[45] Drosophila-12-Genomes-Consortium and Hultmark, D., “Evolution of
genes and genomes on the drosophila phylogeny.,” Nature, vol. 450, no. 7167,
pp. 203–18, 2007. Drosophila 12 Genomes Consortium includes authors from 102
labs. Dan Hultmark contributed to the analysis of genes involved in immunity.

[46] Du, Z., Yin, Z., and Bader, D. A., “On accelerating iterative algorithms
with cuda: A case study on conditional random fields training algorithm for
biological sequence alignment,” in BIBM Workshops, pp. 543–548, IEEE, 2010.

[47] Du, Z., Yin, Z., and Bader, D. A., “A tile-based parallel viterbi algorithm
for biological sequence alignment on gpu with cuda,” in 24th IEEE Interna-
tional Symposium on Parallel and Distributed Processing, IPDPS 2010, Atlanta,
Georgia, USA, 19-23 April 2010 - Workshop Proceedings, pp. 1–8, IEEE, 2010.

[48] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G., “Biological se-
quence analysis: probabilistic models of proteins and nucleic acids. cambridge
univ,” 1998.

[49] Durrett, R. and Interian, Y., “Genomic midpoints: Computation and
evolutionary implications,” 2007.

[50] Dymond, J. S., Richardson, S. M., Coombes, C. E., Babatz, T.,
Muller, H., Annaluru, N., Blake, W. J., Schwerzmann, J. W.,
Dai, J., Lindstrom, D. L., Boeke, A. C., Gottschling, D. E., Chan-
drasegaran, S., Bader, J. S., and Boeke, J. D., “Synthetic chromosome
arms function in yeast and generate phenotypic diversity by design,” Nature,
vol. 477, pp. 471–476, Sept. 2011.

[51] Eckstein, J., Phillips, C. A., and Hart, W. E., “Pico: An object-oriented
framework for parallel branch and bound,” 2001.

[52] Eddy, S. R., “Multiple alignment using hidden markov models.,” Proc Int
Conf Intell Syst Mol Biol, vol. 3, pp. 114–120, 1995.

[53] Edgar, R. C., “Muscle: multiple sequence alignment with high accuracy and
high throughput,” NUCLEIC ACIDS RES, vol. 32, pp. 1792–1797, 2004.

[54] Edgar, R. C. and Sjolander, K., “Satchmo: Sequence alignment and tree
construction using hidden markov models.,” Bioinformatics, vol. 19, no. 11,
pp. 1404–1411, 2003.

104

[55] Ediger, D., Riedy, E. J., Bader, D. A., and Meyerhenke, H., “Tracking
structure of streaming social networks,” in IPDPS Workshops, pp. 1691–1699,
2011.

[56] El-Mabrouk, N., Nadeau, J. H., and Sankoff, D., “Genome halving,” in
Combinatorial Pattern Matching, pp. 235–250, Springer, 1998.

[57] Farris, J. S., “Methods for Computing Wagner Trees,” Systematic Zoology,
vol. 19, no. 1, 1970.

[58] Felsenstein, J., “Evolutionary trees from DNA sequences: a maximum like-
lihood approach.,” Journal of molecular evolution, vol. 17, no. 6, pp. 368–376,
1981.

[59] Fertin, G., Labarre, A., Rusu, I., Tannier, E., and Vialette, S.,
Combinatorics of Genome Rearrangements. The MIT Press, 1st ed., 2009.

[60] Fitch, W. M., “Toward defining the course of evolution: minimum change for
a specific tree topology,” Systematic Zoology, vol. 20, pp. 406–416, 1971.

[61] Fraenkel, A. S. and Lichtenstein, D., “Computing a perfect strategy for
n*n chess requires time exponential in n.,” in ICALP (Even, S. and Kariv,
O., eds.), vol. 115 of Lecture Notes in Computer Science, pp. 278–293, Springer,
1981.

[62] Gao, N., Yang, N., and Tang, J., “Ancestral genome inference using a
genetic algorithm approach,” PLoS ONE, vol. 8, p. e62156, 05 2013.

[63] Gibbs, A. J. and Mcintyre, G. A., “The diagram, a method for comparing
sequences, its use with amino acid and nucleotide sequences,” European Journal
of Biochemistry, vol. 16, no. 1, pp. 1–11, 1970.

[64] Goux, J.-P., Kulkarni, S., Yoder, M., and Linderoth, J., “An en-
abling framework for master-worker applications on the computational grid,”
in Proceedings of the 9th IEEE International Symposium on High Performance
Distributed Computing, HPDC ’00, (Washington, DC, USA), pp. 43–, IEEE
Computer Society, 2000.

[65] Grama, A. Y. and Kumar, V., “A survey of parallel search algorithms for
discrete optimization problems,” ORSA JOURNAL ON COMPUTING, vol. 7,
1993.

[66] Harding, S. and Banzhaf, W., “Fast genetic programming on gpus,” in
Proceedings of the 10th European Conference on Genetic Programming, volume
4445 of LNCS, pp. 90–101, Springer, 2007.

105

[67] Hart, P. E., Nilsson, N. J., and Raphael, B., “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans. Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[68] Hartigan, J. A., “Minimum mutation fits to a given tree,” Biometrics, vol. 29,
pp. 53–65, 1973.

[69] Hartmanis, J., Immerman, N., and Sewelson, V., “Sparse sets in np-
p: Exptime versus nexptime,” Information and Control, vol. 65, pp. 158–181,
May/June 1985.

[70] Heinecke, A., Karthikeyan, V., Mikhail, S., Alexander, K. V., S,
D. R., Greg, H., Aniruddha, S. G., George, C., and Pradeep., D.,
“Design and implementation of the linpack benchmark for single and multi-
node systems based on intel xeon phi coprocessor,” in Proceedings of the 2013
IEEE International Parallel & Distributed Processing Symposium, IPDPS ’13,
(Washington, DC, USA), pp. 1278–1289, IEEE Computer Society, 2013.

[71] Helsgaun, K., “An effective implementation of the lin-kernighan traveling
salesman heuristic.,” European Journal of Operational Research, vol. 126, no. 1,
pp. 106–130, 2000.

[72] Henikoff, S. and Henikoff, J. G., “Amino acid substitution matrices from
protein blocks.,” Proceedings of the National Academy of Sciences of the United
States of America, vol. 89, pp. 10915–10919, Nov. 1992.

[73] Hordijk, W. and Gascuel, O., “Improving the efficiency of spr moves in
phylogenetic tree search methods based on maximum likelihood.,” Bioinfor-
matics, vol. 21, no. 24, pp. 4338–4347, 2005.

[74] Huson, D. H., Nettles, S., and Warnow, T., “Disk-covering, a fast-
converging method for phylogenetic tree reconstruction.,” Journal of Computa-
tional Biology, vol. 6, no. 3/4, pp. 369–386, 1999.

[75] Huson, D. H., Nettles, S., and Warnow, T., “Disk-covering, a fast-
converging method for phylogenetic tree reconstruction.,” Journal of Computa-
tional Biology, vol. 6, no. 3/4, pp. 369–386, 1999.

[76] Huson, D. H., Nettles, S. M., and Warnow, T. J., “Disk-covering, a
fast-converging method for phylogenetic tree reconstruction,” JOURNAL OF
COMPUTATIONAL BIOLOGY, vol. 6, no. 3, pp. 369–386, 1999.

[77] Huson, D. H., Vawter, L., and Warnow, T., “Solving large scale phy-
logenetic problems using dcm2.,” in ISMB (Lengauer, T., Schneider, R.,
Bork, P., Brutlag, D. L., Glasgow, J. I., Mewes, H.-W., and Zimmer,
R., eds.), pp. 118–129, AAAI, 1999.

106

[78] Ishikawa, M., Toya, T., Hoshida, M., Nitta, K., Ogiwara, A., and
Kanehisa, M., “Multiple sequence alignment by parallel simulated anneal-
ing.,” Computer Applications in the Biosciences, vol. 9, no. 3, pp. 267–273,
1993.

[79] Jansson, J., Shen, C., and Sung, W.-K., “An optimal algorithm for building
the majority rule consensus tree,” in RECOMB, pp. 88–99, 2013.

[80] Kang, S., Tang, J., Schaeffer, S., and Bader, D., “Rec-dcm-eigen: Re-
constructing a less parsimonious but more accurate tree in shorter time.,” PLoS
One, vol. 6, no. 8, p. e22483, 2011.

[81] Katoh, K. and Toh, H., “Recent developments in the mafft multiple sequence
alignment program.,” Briefings in Bioinformatics, vol. 9, no. 4, pp. 286–298,
2008.

[82] Korf, R. E., “Depth-first iterative-deepening: An optimal admissible tree
search,” Artificial Intelligence, vol. 27, pp. 97–109, 1985.

[83] Korf, R. E., “Best-first frontier search with delayed duplicate detection,” in
Proceedings of the 19th national conference on Artifical intelligence, AAAI’04,
pp. 650–657, AAAI Press, 2004.

[84] Korf, R. E., Zhang, W., Thayer, I., and Hohwald, H., “Frontier search,”
J. ACM, vol. 52, no. 5, pp. 715–748, 2005.

[85] Lafond, M., Swenson, K. M., and El-Mabrouk, N., “An optimal recon-
ciliation algorithm for gene trees with polytomies,” in Proceedings of the 12th
international conference on Algorithms in Bioinformatics, WABI’12, (Berlin,
Heidelberg), pp. 106–122, Springer-Verlag, 2012.

[86] Langdon, W. B. and Banzhaf, W., “A simd interpreter for genetic pro-
gramming on gpu graphics cards,” 2008.

[87] Lenne, R., Solnon, C., Stutzle, T., Tannier, E., and Birattari, M.,
“Reactive Stochastic Local Search Algorithms for the Genomic Median Prob-
lem,” in Eighth European Conference on Evolutionary Computation in Com-
binatorial Optimisation (EvoCOP) (Carlos Cotta, J. v. H., ed.), LNCS,
pp. 266–276, Springer, Mar. 2008.

[88] Lin, Y., Hu, F., Tang, J., and Moret, B., “Maximum likelihood phyloge-
netic reconstruction from high-resolution whole-genome data and a tree of 68
eukaryotes,” in Proc. 18th Pacific Symp. on Biocomputing, PSB’13, (Washing-
ton, DC, USA), pp. 285–296, IEEE Computer Society, 2013.

107

[89] Lin, Y., Rajan, V., and Moret, B. M. E., “Fast and accurate phylogenetic
reconstruction from high-resolution whole-genome data and a novel robustness
estimator,” in Proceedings of the 2010 international conference on Compara-
tive genomics, RECOMB-CG’10, (Berlin, Heidelberg), pp. 137–148, Springer-
Verlag, 2010.

[90] Liu, W., Schmidt, B., Voss, G., and Wittig, W. M., “Streaming Al-
gorithms for Biological Sequence Alignment on GPUs,” IEEE Trans. Parallel
Distrib. Syst., vol. 18, no. 9, pp. 1270–1281, 2007.

[91] Ma, J., Reconstructing contiguous regions of an ancestral genome. PhD thesis,
University Park, PA, USA, 2006. AAI3248364.

[92] Ma, J., “A probabilistic framework for inferring ancestral genomic orders,” in
Park et al. [111], pp. 179–184.

[93] Ma, J., Ratan, A., Raney, B. J., Suh, B. B., Zhang, L., Miller, W.,
and Haussler, D., “Dupcar: Reconstructing contiguous ancestral regions with
duplications,” Journal of Computational Biology, vol. 15, no. 8, pp. 1007–1027,
2008.

[94] Maddison, D. R., Swofford, D. L., and Maddison, W. P., “Nexus: An
extensible file format for systematic information,” Systematic Biology, vol. 46,
pp. 590–621, December 1997.

[95] Madduri, K., Bader, D. A., Berry, J. W., and Crobak, J. R., “An
experimental study of a parallel shortest path algorithm for solving large-scale
graph instances.,” in ALENEX, SIAM, 2007.

[96] Manavski, S. and Valle, G., “Cuda compatible gpu cards as efficient hard-
ware accelerators for smith-waterman sequence alignment,” BMC Bioinformat-
ics, vol. 9, no. S-2, 2008.

[97] Meyer, U. and Sanders, P., “Delta-stepping: a parallelizable shortest path
algorithm.,” J. Algorithms, vol. 49, no. 1, pp. 114–152, 2003.

[98] Mingfu Shao, Y. L. and Moret, B., “An exact algorithm to compute the
dcj distance for genomes with duplicate genes,” in RECOMB 2013, ser. Lecture
Notes in CS, pp. 1–10, springer, 2013.

[99] Moret, B. M., Wyman, S., Bader, D. A., Warnow, T., and Yan, M.,
“A new implementation and detailed study of breakpoint analysis.,” Pac Symp
Biocomput, pp. 583–594, 2001.

108

[100] Moret, B. M. E., Tang, J., san Wang, L., and Warnow, Y., “Steps to-
ward accurate reconstructions of phylogenies from gene-order data,” J. Comput.
Syst. Sci, vol. 65, pp. 508–525, 2002.

[101] Moret, B. M. E., Wang, L.-S., Warnow, T., and Wyman, S. K., “New
approaches for reconstructing phylogenies from gene order data.,” in ISMB
(Supplement of Bioinformatics), pp. 165–173, 2001.

[102] Moret, B. M. E., Wyman, S., Bader, D. A., Warnow, T., and Yan,
M., “A new implementation and detailed study of breakpoint analysis,” 2001.

[103] Morgenstern, B., “Dialign 2: improvement of the segment-to-segment ap-
proach to multiple sequence alignment.,” Bioinformatics, vol. 15, no. 3, pp. 211–
218, 1999.

[104] Nguyen, C. T., Tay, Y. C., and Zhang, L., “Divide-and-conquer approach
for the exemplar breakpoint distance,” Bioinformatics, vol. 21, pp. 2171–2176,
May 2005.

[105] Nickolls, J., Buck, I., Garland, M., and Skadron, K., “Scalable parallel
programming with cuda,” Queue, vol. 6, pp. 40–53, Mar. 2008.

[106] NVIDIA Corporation, NVIDIA CUDA C Programming Guide, June 2011.

[107] O. Green, R. M. and Bader, D., “A fast algorithm for incremental be-
tweenness centrality,” in 4th ASE/IEEE International Conference on Social
Computing, 2012.

[108] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Kruger, J.,
Lefohn, A. E., and Purcell, T., “A survey of general-purpose computation
on graphics hardware,” 2007.

[109] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., KrÃĳger, J.,
Lefohn, A., and Purcell, T. J., “A survey of general-purpose computation
on graphics hardware,” Computer Graphics Forum, vol. 26, no. 1, pp. 80–113,
2007.

[110] Park, J., Tang, P. T. P., Smelyanskiy, M., Kim, D., and Benson,
T., “Efficient backprojection-based synthetic aperture radar computation with
many-core processors,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’12, (Los
Alamitos, CA, USA), pp. 28:1–28:11, IEEE Computer Society Press, 2012.

[111] Park, T., Tsui, S. K.-W., Chen, L., Ng, M. K., Wong, L., and Hu, X.,
eds., 2010 IEEE International Conference on Bioinformatics and Biomedicine,

109

BIBM 2010, Hong Kong, China, 18 - 21 December 2010, Proceedings, IEEE
Computer Society, 2010.

[112] Pe’er, I. and Shamir, R., “The median problems for breakpoints are np-
complete,” Elec. Colloq. on Comput. Complexity, vol. 71, 1998.

[113] Pevzner, P. A., Computational molecular biology - an algorithmic approach.
MIT Press, 2000.

[114] Pham, S. K. and Pevzner, P. A., “Drimm-synteny: decomposing genomes
into evolutionary conserved segments.,” Bioinformatics, vol. 26, no. 20,
pp. 2509–2516, 2010.

[115] Phillips, C. A. and Hart, W. E., “Pebbl 1.0 user’s guide jonathan eckstein
a.”

[116] Poli, R., Langdon, W. B., and McPhee, N. F., A Field Guide to Genetic
Programming. Lulu Enterprises, UK Ltd, 2008.

[117] Przytycka, T. M. and Sagot, M.-F., eds., Algorithms in Bioinformatics
- 11th International Workshop, WABI 2011, Saarbrücken, Germany, Septem-
ber 5-7, 2011. Proceedings, vol. 6833 of Lecture Notes in Computer Science,
Springer, 2011.

[118] Rajan, V., Xu, A. W., Lin, Y., Swenson, K. M., and Moret, B. M. E.,
“Heuristics for the inversion median problem.”

[119] Robson, J. M., “The complexity of go.,” in IFIP Congress, pp. 413–417, 1983.

[120] Robson, J. M., “N by n checkers is exptime complete.,” SIAM J. Comput.,
vol. 13, no. 2, pp. 252–267, 1984.

[121] Roshan, U., Moret, B. M. E., Warnow, T., and Williams, T. L.,
“Rec-i-dcm3: A fast algorithmic technique for reconstructing large phylogenetic
trees,” in In Proc. IEEE Computer Society Bioinformatics Conference (CSB
2004), pp. 98–109, IEEE Press, 2004.

[122] Saitou, N. and Nei, M., “The neighbor-joining method: a new method for
reconstructing phylogenetic trees.,” Molecular biology and evolution, vol. 4,
pp. 406–425, July 1987.

[123] Sankoff, D., “Genome rearrangement with gene families.,” Bioinformatics,
vol. 15, no. 11, pp. 909–917, 1999.

[124] Sankoff, D. and Blanchette, M., “The median problem for breakpoints
in comparative genomics.,” in COCOON (Jiang, T. and Lee, D. T., eds.),
vol. 1276 of Lecture Notes in Computer Science, pp. 251–264, Springer, 1997.

110

[125] Sankoff, D. and Haque, L., “Power boosts for cluster tests,” in Proceed-
ings of the 2005 international conference on Comparative Genomics, RCG’05,
(Berlin, Heidelberg), pp. 121–130, Springer-Verlag, 2005.

[126] Sawa, G., Dicks, J., and Roberts, I. N., “Current approaches to whole
genome phylogenetic analysis.,” Brief Bioinform, vol. 4, pp. 63–74, Mar. 2003.

[127] Schaeffer, S. W., Bhutkar, A., McAllister, B. F., Matsuda, M.,
Matzkin, L. M., O’Grady, P. M., Rohde, C., Valente, V. L. S.,
Aguadé, M., Anderson, W. W., Edwards, K., Garcia, A. C. L.,
Goodman, J., Hartigan, J., Kataoka, E., Lapoint, R. T., Lozovsky,
E. R., Machado, C. A., Noor, M. A. F., Papaceit, M., Reed, L. K.,
Richards, S., Rieger, T. T., Russo, S. M., Sato, H., Segarra, C.,
Smith, D. R., Smith, T. F., Strelets, V., Tobari, Y. N., Tomimura,
Y., Wasserman, M., Watts, T., Wilson, R., Yoshida, K., Markow,
T. A., Gelbart, W. M., and Kaufman, T. C., “Polytene Chromosomal
Maps of 11 Drosophila Species: The Order of Genomic Scaffolds Inferred From
Genetic and Physical Maps,” Genetics, vol. 179, pp. 1601–1655, July 2008.

[128] Sforza, C. L. L. and Edwards, A. W. F., “Phylogenetic analysis: Mod-
els and estimation procedures,” American Journal of Human genetics, vol. 19,
pp. 223–257, 1967.

[129] Shao, M. and Lin, Y., “Approximating the edit distance for genomes with
duplicate genes under dcj, insertion and deletion,” BMC Bioinformatics, vol. 13,
no. S-19, p. S13, 2012.

[130] Shinano, Y., Higaki, M., and Hirabayashi, R., “A generalized utility for
parallel branch and bound algorithms,” in Proceedings of the 7th IEEE Sym-
posium on Parallel and Distributeed Processing, SPDP ’95, (Washington, DC,
USA), pp. 392–, IEEE Computer Society, 1995.

[131] Sjolander, K., Karplus, K., Brown, M., Hughey, R., Krogh, A.,
Mian, I. S., and Haussler, D., “Dirichlet mixtures: a method for improved
detection of weak but significant protein sequence homology.,” Computer Ap-
plications in the Biosciences, vol. 12, no. 4, pp. 327–345, 1996.

[132] Sokal, R. R. and Michener, C. D., “A statistical method for evaluat-
ing systematic relationships,” University of Kansas Scientific Bulletin, vol. 28,
pp. 1409–1438, 1958.

[133] Sokal, R. R. and Michener, C. D., “A statistical method for evaluat-
ing systematic relationships,” University of Kansas Scientific Bulletin, vol. 28,
pp. 1409–1438, 1958.

111

[134] Stamatakis, A., “RAxML-VI-HPC: maximum likelihood-based phylogenetic
analyses with thousands of taxa and mixed models,” Bioinformatics/computer
Applications in The Biosciences, vol. 22, pp. 2688–2690, 2006.

[135] Swenson, K. M., Doroftei, A., and El-Mabrouk, N., “Gene tree cor-
rection for reconciliation and species tree inference.,” Algorithms for Molecular
Biology, vol. 7, p. 31, 2012.

[136] Tannier, E., Zheng, C., and Sankoff, D., “Multichromosomal genome
median and halving problems,” in Proceedings of the 8th international workshop
on Algorithms in Bioinformatics, WABI ’08, (Berlin, Heidelberg), pp. 1–13,
Springer-Verlag, 2008.

[137] Tantar, A. A., Melab, N., Talbi, E. G., Parent, B., and Horvath,
D., “A parallel hybrid genetic algorithm for protein structure prediction on the
computational grid,” Future Gener. Comput. Syst., vol. 23, pp. 398–409, Mar.
2007.

[138] Thompson, J. D., Higgins, D. G., and Gibson, T. J., “CLUSTAL W:
improving the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix choice.,”
Nucleic acids research, vol. 22, pp. 4673–4680, Nov. 1994.

[139] Ullmann, J. R., “An algorithm for subgraph isomorphism,” J. ACM, vol. 23,
pp. 31–42, Jan. 1976.

[140] Vuduc, R., Chandramowlishwaran, A., Choi, J., Guney, M., and
Shringarpure, A., “On the limits of gpu acceleration,” in Proceedings of
the 2nd USENIX conference on Hot topics in parallelism, HotPar’10, (Berkeley,
CA, USA), pp. 13–13, USENIX Association, 2010.

[141] Williams, S., Kalamkar, D. D., Singh, A., Deshpande, A. M.,
Van Straalen, B., Smelyanskiy, M., Almgren, A., Dubey, P., Shalf,
J., and Oliker, L., “Optimization of geometric multigrid for emerging multi-
and manycore processors,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, SC ’12, (Los
Alamitos, CA, USA), pp. 96:1–96:11, IEEE Computer Society Press, 2012.

[142] Xu, A. W., “Dcj median problems on linear multichromosomal genomes:
Graph representation and fast exact solutions,” in Ciccarelli and Miklós [35],
pp. 70–83.

[143] Xu, A. W., “A fast and exact algorithm for the median of three problem:
A graph decomposition approach,” Journal of Computational Biology, vol. 16,
no. 10, pp. 1369–1381, 2009.

112

[144] Xu, A. W., “On exploring genome rearrangement phylogenetic patterns.,” in
RECOMB-CG (Tannier, E., ed.), vol. 6398 of Lecture Notes in Computer
Science, pp. 121–136, Springer, 2010.

[145] Xu, A. W. and Moret, B. M. E., “Gasts: Parsimony scoring under rear-
rangements,” in Przytycka and Sagot [117], pp. 351–363.

[146] Xu, A. W. and Sankoff, D., “Decompositions of multiple breakpoint graphs
and rapid exact solutions to the median problem,” in Proceedings of the 8th
international workshop on Algorithms in Bioinformatics, WABI ’08, (Berlin,
Heidelberg), pp. 25–37, Springer-Verlag, 2008.

[147] Xu, Y., Ralphs, T. K., Ladanyi, L., and Saltzman, M. J., “Alps: A
framework for implementing parallel search algorithms,” in In Proceedings of
the Ninth INFORMS Computing Society Conference, pp. 319–334, 2005.

[148] Yan, M., High-performance algorithms for phylogeny reconstruction with max-
imum parsimony. PhD thesis, 2004. AAI3129663.

[149] Yan, M. and Bader, D. A., “D.a.: Fast character optimization in parsimony
phylogeny reconstruction,” tech. rep., 2003.

[150] Yancopoulos, S., Attie, O., and Friedberg, R., “Efficient sorting of ge-
nomic permutations by translocation, inversion and block interchange,” Bioin-
formatics, vol. 21, pp. 3340–3346, Aug. 2005.

[151] Ye, F., Guo, Y., Lawson, A., and Tang, J., “Improving tree search in phy-
logenetic reconstruction from genome rearrangement data.,” in WEA (Deme-
trescu, C., ed.), vol. 4525 of Lecture Notes in Computer Science, pp. 352–364,
Springer, 2007.

[152] Yin, Z., Tang, J., Schaeffer, S. W., and Bader, D. A., “Streaming
breakpoint graph analytics for accelerating and parallelizing the computation
of dcj median of three genomes,” in Alexandrov et al. [8], pp. 561–570.

[153] Zhang, J., “Evolution by gene duplication: an update,” Trends in Ecology &
Evolution, vol. 18, pp. 292–298, June 2003.

[154] Zhang, W. and Korf, R. E., “Depth-first vs. best-first search: new re-
sults,” in Proceedings of the eleventh national conference on Artificial intelli-
gence, AAAI’93, pp. 769–775, AAAI Press, 1993.

[155] Zhang, W. and Korf, R. E., “Performance of linear-space search algo-
rithms,” Artif. Intell., vol. 79, no. 2, pp. 241–292, 1995.

[156] Zhang, y., Hu, F., and Tang, J., “A mixture framework for inferring ances-
tral gene orders,” BMC Genomics, vol. 13(Suppl 1): S7, 2012.

113

[157] Zhou, R. and Hansen, E. A., “Breadth-first heuristic search,” Artif. Intell.,
vol. 170, pp. 385–408, Apr. 2006.

[158] Zola, J., Yang, X., Rospondek, A., and Aluru, S., “Parallel-tcoffee: A
parallel multiple sequence aligner.,” in ISCA PDCS (Chaudhry, G. and Lee,
S.-Y., eds.), pp. 248–253, ISCA, 2007.

114

VITA

Zhaoming Yin was born in the city of Hengyang, the second largest city in Hunan

Province. He spent 2 years studying Chemical Engineering at the Hunan University

then transfered his major to Software Engineering. After his graduation, he spent

three years to get his Master Degree from Peking University, where he was doing

projects and research related to Nature Language Processing and High Performance

Computing.

Since Aug 2010, Zhaoming moved to Atlanta, a beautiful city in United States, and

started his PhD. studying Computational Science and Engineering at Georgia In-

stitute of Technology under the supervision of Prof. David A. Bader. Working on

genome rearrangement based phylogenetic tree construction algorithms, which is con-

sisted of multiple NPC problems.

PUBLICATIONS

[1] Zhaoming Yin, Jijun Tang, Stephen Schaeffer, David A. Bader, A Lin-Kernighan

Heuristic for the DCJ Median Problem of Genomes with Unequal Contents. (Sub-

mitted, COCOON 2014 : International Computing and Combinatorics Conference,

Atlanta, USA)

[2] Satish Nadathur et. al Navigating the Maze of Graph Analytics Frameworks using

Massive Graph Datasets, SIGMOD 2014, Snowbird, USA 2014

[3] Zhaoming Yin, Jijun Tang, Stephen Schaeffer, David A. Bader, Streaming Break-

point Graph Analytics for Accelerating and Parallelizing DCJ Median of Three Genomes.

115

International Conference on Computational Science, Barcelona, Spain, June, 2013

[4] Zhihui Du, Zhaoming Yin, Wenjie Liu, David A. Bader On Accelerating Itera-

tive Algorithms with CUDA: A Case Study on Conditional Random Fields Training

Algorithm for Biological Sequence Alignment Workshop on Data mining of Next-

Generation Sequencing Data (In conjunction with BIBM 2010) Hongkong, China,

Dec 17, 2010

[5] Zhihui Du, Zhaoming Yin, David. A. Bader A Tile-based Parallel Viterbi Algo-

rithm for Biological Sequence Alignment on GPU with CUDA IEEE International

Parallel and Distributed Processing Symposium (IPDPS) 2010 HiComb Workshop,

Atlanta USA.

[6] Zhaoming Yin, Huarui Zhang Research on Chinese n-gram Statistical Rule and its

application 14th Youth Conference on Communication (YCC) 2009, Dalian, China.

(ISTP: 000270587500121)

116

