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Abstract. To achieve high throughput in the POW based blockchain
systems, researchers proposed a series of methods, and DAG is one of
the most active and promising fields. We designed and implemented the
StreamNet, aiming to engineer a scalable and endurable DAG system.
When attaching a new block in the DAG, only two tips are selected. One
is the ‘parent’ tip whose definition is the same as in Conflux [I]; another
is using Markov Chain Monte Carlo (MCMC) technique by which the
definition is the same as IOTA [2]. We infer a pivotal chain along the
path of each epoch in the graph, and a total order of the graph could
be calculated without a centralized authority. To scale up, we leveraged
the graph streaming property; high transaction validation speed will be
achieved even if the DAG is growing. To scale out, we designed the ‘direct
signal’ gossip protocol to help disseminate block updates in the network,
such that messages can be passed in the network more efficiently. We
implemented our system based on IOTA’s reference code (IRI) and ran
comprehensive experiments over the different sizes of clusters of multiple
network topologies.
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1 Introduction

Since bitcoin [3] has been proposed, blockchain technology has been studied
for 10 years. Extensive adoptions of blockchain technologies was seen in real-
world applications such as financial services with potential regulation challenges

[45], supply chains [6I78], health cares [9II0] and IoT devices [II]. The core of
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blockchain technology depends on the consensus algorithms applying to the open
distributed computing world. Where computers can join and leave the network,
and these computers can cheat.

As the first protocol that can solve the so-called Byzantine general prob-
lem, the bitcoin system suffers from a low transaction rate with a transaction
per second (TPS) of approximately 7, and long confirmation time (about an
hour). As more machines joined the network, they are competing for the priv-
ileges to attach the block (miners), which results in a massive waste of electric
power. While skyrocketing fees are paid to make sure the transfers of money will
be placed in the chain. On par, there are multiple proposals to solve the low
transaction speed issue. One method intends to solve the speed problem without
changing the chain data structure, for instance, segregated witness [12] or off-
chain technologies such as lightning network [I3] or plasma [I4]. Another hard
fork way changed the bitcoin protocol, such as the bitcoin cash tries to improve
the throughput of the system by enlarging the data size of each block from 1
Mb to 4 Mb.

To minimize the computational cost of POW, multiple organizations have
proposed a series of proof of stake method (POS) [IHII6IT7II8ITI] to make sure
that those who have the privilege to attach the block proportional to their to-
ken shares. Another idea targeting at utilizing the power in POW to do useful
and meaningful tasks such as training machine learning models are also proposed
[20]. Besides, inspired by the PBFT algorithm [21] and a set of related variations,
the so-called hybrid (or consortium) chain was proposed. The general idea is to
use a two-step algorithm; the first step is to elect a committee; the second step
is collecting committee power to employ PBFT for consensus. Bitcoin-NG [22] is
the early adopter of this idea, which splits the blocks of bitcoin into two groups:
for master election and another for regular transaction blocks. Honey-badger
[23] is the system that first introduced the consensus committee; it uses prede-
fined members to perform the PBFT algorithm to reach consensus. The Byzcoin
system [24] brought forth the idea of POW for the committee election and uses
a variation of PBFT called collective signing for speed purposes. The Algorand
[25] utilizes a random function to elect a committee and use this committee to
commit blocks anonymously, and the member of the committee only has one
chance to commit block. Other popular systems include Ripple [26], Stellar [27]
and COSMOS [28] etc. All these systems have one common feature, the split of
layers of players in the network, which results in the implementation complex-
ity. While the methods above are aiming to avoid side chains, another thread
of effort is put on using a direct acyclic graph(DAG) to merge side chains. The
first-ever idea comes with growing the blockchain with trees instead of chains
[29], which results in the well-known GHOST protocol [30]. If one block links
to > 2 previous blocks, then the data structure grows like a DAG instead of
tree [31], SPECTRE [32] and PHANTOM [33] are such type of systems. Byte-
ball [34] is the system that constructs the main chain, and leverage this main
chain to help infer the total order, nonetheless, the selection of the main chain
is dependent on a role called to witness, which is purely centralized. Conflux is
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an improvement of the GHOST based DAG algorithm, which also utilizes the
pivotal (main) chain without the introduction of witness and claim to achieve
6000 of TPS in reality [1]. IOTA tried to avoid the finality of constructing a
linear total order by introducing the probabilistic confirmation in the network
[2]. As mentioned earlier, the systems are permissionless chains; in the permis-
sion chains, DAG technology is also applied. HashGraph [35] is the system that
utilizes the gossip on gossip algorithm to propagate the block graph structure,
and achieve the consensus by link analysis in the DAG, this method is proved
to be Byzantine fault-tolerant and does not rely on voting. Blockmainia [36] is
based on the original PBFT design, but its underlying log is DAG-based. Some
of the side chain methods also borrow the idea of DAG, such as nano [37] and
VITE [38]. These systems, in reality, rely on centralized methods to maintain
their stability.

Social network analysis has widely adopted the method of streaming graph
computing [3940[4T], which deals with how to quickly maintain information on
a temporally or spatially changing graph without traversing the whole graph.
We view the DAG-based method as a streaming graph problem, which is about
computing the total order and achieving consensus without consuming more
computing power. In distributed database systems, the problem of replicating
data across machines is a well-studied topic [42]. Due to the bitcoin network’s low
efficiency, there are multiple ways to accelerate the message passing efficiency
[43]. However, they did not deal with network complexity. We viewed scaling
the DAG system in the network of growing size and topological complexity as
another challenging issue and proposed our gossip solution. This paper’s main
contribution is how to utilize the streaming graph analysis methods and new
gossip protocol to enable real decentralized, and stabilized growing DAG system.

2 Basic design

2.1 Data structure

The local state of a node in the StreamNet protocol is a direct acyclic graph
(DAG) G =< B, g, P, E >. B is the set of blocks in G. g € G is the genesis block.
For instance, vertex g in Figure [I| represents the Genesis block. P is a function
that maps a block b to its parent block P(b). Specially, P(g) =L. In Figure
parent relationships are denoted by solid edges. Note that there is always a parent
edge from a block to its parent block (i.e., Vb € B, b, P(b) >€ E). E is the set
of directly reference edges and parent edges in this graph. e =< b, >€ E is
an edge from the block b to the block &', which means that ' happens before b.
For example in Figure [1} vertex 1 represents the first block, which is the parent
for the subsequent block 2, 3 and 4. Vertex 5 has two edges; one is the parent
edge pointing to 3, another is reference edge pointing to 4. When a new block is
not referenced, it is called a tip. For example, in Figure [1} block 6 is a tip. All
blocks in the StreamNet protocol share a predefined deterministic hash function
Hash that maps each block in B to a unique integer id. It satisfies that Vb # ¥’,
Hash(b) # Hash(¥').
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4 «~—— Parent edge
<« - - - Reference edge

Fig.1. Example of the StreamNet data structure.

2.2 StreamNet Architecture

Algorithm 1: StreamNet node main loop.
Input: Graph G =< B,g,P,E >

1 while Node is running do

2 if Received G' =< B’,g,P', E' > then

3 G"+<BUB',g,PUP ,EUE' >;

4 if G # G” then

5 G+ G,

6

7

8

9

Broadcase updated G to neighbors ;
if Generate block b then

a <+ Pivot(G,g) ;

r<« MCMC(G,g) ;

10 G+<BUb,g,PU<ba>FEU<ba>U<br>>;
11 Broadcase updated G to neighbors ;
12 end

Figure [2] presents the architecture of StreamNet; it is consists of multiple
StreamNet machines. Each StreamNet machine will grow its DAG locally and
will broadcast the changes using the gossip protocol. Eventually, every machine
will have a unified view of DAG. By calling the total ordering algorithm, every
machine can sort the DAG into a total order, and the data in each block can have
a relative order regardless of their local upload time. Figure |3| shows the local
architecture of StreamNet. In each StreamNet node, there will be a transaction
pool accepting the transactions from the HTTP API. Moreover, there will be
a block generator to pack a certain amount of transactions into a block, and it
firstly finds a parent and reference block to attach the new block to, based on
the hash information of these two blocks and the metadata of the block itself,
it will then perform the proof of work (POW) to calculate the nonce for the
new block. Algorithm [I] summarize the server logic for a StreamNet node. In the
algorithm, the way to find parent block is by Pivot(G, g). Furthermore, the way
to find a reference block is by calling MCMC(G, g), which is the Markov Chain
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Monte Carlo (MCMC) random walk algorithm [2]. The two algorithms will be
described in the later section.
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Fig. 2. StreamNet architecture.
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Fig. 3. One node in StreamNet protocol.
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2.3 Consensus protocol

Based on the predefined data structure, to present the StreamNet consensus
algorithm, we firstly define several utility functions and notations, which is a
variation from the definition in the Conflux paper [I]. Chain() returns the chain
from the genesis block to a given block following only parent edges. Chain(G, b)
returns all blocks except those in the chain. Child() returns the set of child
blocks of a given block. Sibling() returns the set of siblings of a given block.
Subtree() returns the subtree of a given block in the parental tree. Before()
returns the set of blocks that are immediately generated before a given block.
Past() returns the set of blocks generated before a given block (but including the
block itself). After() returns the set of blocks that are immediately generated
after a given block. Later() returns the set of blocks generated after a given block
(but including the block itself). SubGraph() returns the subgraph by removing
blocks and edges except for the initial set of blocks. ParentScore() presents the
weight of blocks, and each block has a score when referenced as a parent. Score()
presents the weight of blocks, and each block achieves a score when attaching to
the graph. TotalOrder() returns the ‘flatten’ order inferred from the consensus
algorithm. Figure (] represents the definition of these utility functions.

|G=<B,g,PE>]|

g b=g

Chain(G, P(b)) otherwise
Chain(G,b) = {b'|t € B,b' ¢ Chain(G,b)}
Child(G,b) = {V'|P(t') = b}

Sibling(G, b) = Child(G, P(b))

SubTree(G,b) = (Uicchila(a,p)Substree(G,i)) U {b}
Before(G,b) = {V'|V' € B,< b,b' >c E}

Past(G,b) = (Uscpefore(c,pyPast(G,i)) U {b}
After(G,b) = {b'|b' € B,<V,b>€ E}

Later(G,b) = (Uicafter(a,p) Later(G, 1)) U {b}
SubGraph(G,B') =< B',P' | E' > |

V<bb > E,bCB& CcB

ParentScore(G,b) = |SubTree(G,b)|

Score(G,b) = |Later(G, b)|

TotalOrder(G) = StreamNetOrder(G, Pivot(G, g))

Chain(G,b) = {

Fig. 4. The Definitions of Chain(), Child(), Sibling(), Subtree(), Before(), Past(), Af-
ter(), Later(), SubGraph(), ParentScore(), Score(), and TotalOrder().
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Algorithm 2: MCMC(G, b).
Input: The local state G = < B, g, P, E > and a starting block b € B
Output: A random tip ¢
t<b
do
for V' € Child(G,t) do
Py — _ eaScore(G,b)

. pe0Score(@2)
end
t < choose b by Py
while Score(G,t) I= 0;

return t ;

N oo A W N
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Fig.5. An example of total order calculation.

Parent tip Selection by pivotal chain The algorithm Algorithm 3| presents
our pivot chain selection algorithm(i.e., the definition of Pivot(G,b)). Given
a StreamNet state G, Pivot(G,g) returns the last block in the pivoting chain
starting from the genesis block g. The algorithm recursively advances to the
child block, whose corresponding sub-tree has the most significant number of
children. Which is calculated by ParentScore(G,b) When there are multiple
child blocks with the same score, the algorithm selects the child block with the
largest block hash. The algorithm terminates until it reaches a tip. Each block
in the pivoting chain defines an epoch, the nodes in DAG that satisfy Past(G,b)
- Past(G,p) will belong to the epoch of block b. For example, in Figure [5| the
pivoting chain is < ¢,1,3,5,6 >, and the epoch of block 5 contains two blocks 4
and 5.

Reference tip selection by MCMC The tip selection method by using Monte
Carlo Random Walk (MCMCQ) is as Algorithm [2| shows. Each random walk step,
starting from the genesis, will choose a child to jump to, and the probability of
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Algorithm 3: pIvoT(G, b).
Input: The local state G = < B, g, P, E > and a starting block b € B
Output: The tip in the pivot chain

1 do

2 b« Child(G,b) ;

3 tmpMaxScore + -1 ;

4 tmpBlock + 1 ;

5 for b’ € Child(G,b) do

6 pScore <+ ParentScore(G, b') ;

7 if score > tmpMaxzScore || (score = tmpMaxScore

and Hash(b' ) < Hash(tmpBlock) then

8 tmpMaxScore < pScore ;

9 tmpBlock + b ;
10 end
11 end
12 b + tmpBlock ;

13 while Child(G,b) I= 0;
14 return b ;

jumping from one block to the next block will be calculated using the formula in
the algorithm. « in the formula is a constant that is used to scale the randomness
of the MCMC function, the smaller it is, the more randomness will be in the
MCMC function. The algorithm returns until it finds a tip.

Total Order Algorithm defines StreamNetOrder(), which corresponds to our
block ordering algorithm. Given the local state G and a block b in the pivoting
chain, StreamNetOrder(G, b) returns the ordered list of all blocks that appear
in or before the epoch of b. Using StreamNetOrder(), the total order of a local
state G is defined as TotalOrder(G). The algorithm recursively orders all blocks
in previous epochs(i.e., the epoch of P(b) and before). It then computes all blocks
in the epoch of b as Ba. It topologically sorts all blocks in Ba and appends it into
the result list. The algorithm utilizes a unique hash to break ties. In Figure
the final total order is < g, 1,3,4,5,2,6 >.

2.4 The UTXO model

In StreamNet, the transactions utilize the unspent transaction out (UTXO)
model, which is the same as in Bitcoin. In the confirmation process, the user
will call TotalOrder to get the relative order of different blocks, and the conflict
content of the block will be eliminated if the order of the block is later than
the one conflicting with it in the total order. Figure [6] shows the example of
the storage of UTXO in StreamNet and how the conflict is resolved. Two blocks
referenced the same block with Alice having five tokens and constructing the
new transaction out, representing the transfer of token to Bob and Jack, respec-



StreamNet 9

Algorithm 4: STREAMNETORDER(G, b).

Input: The local state G = < B,g, P, E > and a tip block b € B
Output: The block list of total top order starting from Genesis block to
the giving block b in G

1 L=1

2 do

3 p < Parent(G,b) ;

4 Ba « Past(G,b) - Past(G,p) ;

5 do

6 G’ + SubGraph(Ba) ;

7 Bj < {x || Before(G',x) = 0} ;

8 Sort all blocks in Bj in order as b}, b, ..., b},
9 such that V1< ¢ < j < k, Hash(b;) < Hash(b}) ;
10 L+ L+b,+b5+...+b;
11 Ba < Ba - By ;
12 while Ba # 0;
13 b=rp;
14 while b /= g;
15 return L ;

tively. However, after calling totalOrder(), the Bob transfer block precedes the
Jack transfer block; thus, the next block will be discarded.

Id: ¢

TxIn: a

txOut: Alice 4
Jack1

Id:a

TxIn: ... Id: b
txOut: Alice 5 TxIn: a

txOut: Alice 4

Bob 1

Id:a
TxIn: ...

Id: b CH
TxIn: a Txin: a

txOut: Alice 5 txOut: Alice 4 txOut: Alicad

Bob 1 Jack L

Fig. 6. An example of UTXO.
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2.5 Gossip Network

In the bitcoin and IOTA network, the block information is disseminated in a
direct mail way [42]. Suppose there are N nodes and L links in the network, for
a block of size B, to spread the information of it, the direct mail algorithm will
have a total complexity of O(LB). Moreover, the average complexity for a node
will be O(%) In the chain based system, and this is fine because the design of
the system already assumes that the transaction rate will below. However, in the
DAG-based system, this type of gossip manner will result in low scalability due
to the high throughput of the block generation rate and will result in network
flooding. What is worse, consider the heterogeneously and long diameters of
network topology, the convergence of DAG will take a long time, which will
cause the delay of confirmation time of blocks.

2.6 Differences with other DAG protocols

Here, we mainly compare the difference of our protocol with two mainstream
DAG-based protocols. One is IOTA, and another is Conflux.

IOTA The major difference with IOTA is in three points:

— Firstly, the IOTA tip selection algorithm’s two tips are all randomly chosen,
and ours is one deterministic which is for the total ordering purposes and
one by random which is for maintaining the DAG property;

— Secondly, the IOTA consensus algorithm is not purely decentralized, it relies
on a central coordinator to issue milestones for multiple purposes, and our
algorithm does not depend on such a facility.

— Lastly, in IOTA, there is no concept of total order, and there are three ways
to judge if a transaction is confirmed:

e The first way is that the common nodes covered by all the tips are
considered to be fully confirmed;

e All transactions referenced by the milestone tip are confirmed.

e The third way is to use MCMC. Call N times to select a tip using the
tip selection algorithm. If this tip references a block, its credibility is
increased by 1. After N selections have been cited M times, then the
credibility is M/N.

Conflux The major difference with Conflux is in two points:

— Firstly, Conflux will approve all tips in the DAG along with the parent,
which is much more complicated than our MCMC based two tip method.
Moreover, when the width of DAG is high, there will be much more space
needed to maintain such data structure.
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— Secondly, the Conflux total ordering algorithm advances from genesis block
to the end while StreamNet advances in the reverse direction. This method is
one of the major contributions to our streaming graph-based optimizations,
which will be discussed in the next chapter. In Conflux paper, there is no
description of how to deal with the complexity paired with the growing
graph.

2.7 Correctness

Safety & Liveness Because StreamNet utilizes the GHOST rule to select the
pivoting chain, which is the same as in Conflux. Thus, it shares the same safety
and correctness property as Conflux. Although the choice of reference chain in
StreamNet is different from Conflux, it only affects the inclusion rate, which is
the probability of a block to be included in the total order.

Confirmation According to Theorem 10 in [30] and the deduction in [I], given
a period of [t — d,t], and block b in pivot chain in this period, the chance of b
kicked out by its sibling b’ is no more than Pr(bgrep) in (1). Which is the same
as in Conflux.

n—m oo

Cm— _ (—axpt)*
Pr(bdrop) < Z qun kol + Z Cka =e aAnt k{ (1)

k=0 k=n—m-+1

Followed by the definitions in Conflux paper [I], in (1), n is the number of
blocks in the subtree before ¢, m is the number of blocks in subtree of b’ before
t. A\ is an honest node’s block generation rate. ¢(0 < ¢ < 1) is the attacker’s
block generation ratio with respect to A\j. From the equation, we can conclude
that with the time ¢ goes, the chance of a block b in the pivoting chain to be
reverted is decreased exponentially.

3 Optimization Methods

One of the biggest challenges to maintain the stability of the DAG system is that,
as the local data structure grows, the graph algorithms (Pivot(), MCMC(),
StreamNetOrder()), relies on some of the graph operators that need to be
recalculated for every newly generated block, which is very expensive. Table
list all the expensive graph operators that are called. Suppose the depth of the
pivoting chain is d, then we give the analysis of complexity in the following way.
ParentScore() and Score() rely on the breadth-first search (BF'S), and the
average BF'S complexity would be O(|B|), and for each MCMC() and Pivot()
called the complexity would be in total O(| B|?) in both of these two cases. The
calculation of Past() also relies on the BF'S operator, in the StreamNetOrder()
algorithm, the complexity would be accrued to O(|B|*d). TopOrder() is used in
sub-order ranking the blocks in the same epoch. It is the classical topological
sorting problem, and the complexity in the StreamNetOrder() would be O(|B]).



12 Zhaoming Yin et al.

Table 1. Analysis of Graph properties calculation

Graph Property Algorithm used |Complexity|Tot
ParentScore(G, b) Pivot() O(|B]) O(|BJ®)
Score(G, b) MCMC() O(|B]) O(|BJ®)
Past(G,b) - Past(G,p)|StreamNetOrder() |O(|B|) O(|B|xd)
TopOrder(G, b) StreamNetOrder()|O(| B]) O(|B])

Considering new blocks are generated and merged into the local data struc-
ture in a streaming way. The expensive graph properties could be maintained
dynamically as the DAG grows. Such that the complexity of calculating these
properties would be amortized to each time a new block is generated or merged.
In the following sections, we will discuss how to design streaming algorithms to
achieve this goal.

3.1 Optimization of Score() and ParentScore()

Algorithm 5: UPDATESCORE(G, b).

Input: Graph G, Block b, Score map S
Output: Updated score map S
Q=1b];
visited = {} ;
while Q!= 0 do
b = Q.pop() ;
for b” € Before(G,b') do
if v ¢ visited ANb"!=L then
Q.append(b”) ;
visited.add(b") ;

© 00 N O s W N

end
ST+ + ;
end

return S ;

fury
o

=
N =

In the optimized version, the DAG will have a map that keeps the score of
each block. Once there is a new generated/merged block, it will trigger the BF'S
based UpdateScore() algorithm to update the block’s scores in the map that are
referenced by the new block. The skeleton of the UpdateScore() algorithm is as
Algorithm [5] shows.
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Algorithm 6: GETDIFFSET(G, b, C).

1
2
3

Input: Graph G, Block b, covered block set C
Output: diff set D < Past(G,b) — Past(G, p)
D=0,

Q< [b] ;

visited = {b} ;

4 p = Parent(G,b) ;

5

© 0 N o

10
11
12
13
14
15

while Q!= 0 do

V' = Q.pop() ;

for b” € Before(G,b") do

if IsCovered(G,p,b”,C) Ab'!=1 then

Q.append(b”) ;
visited.add(b") ;

end

D.add(¥) ;

C.add(b') ;

end

return D ;

Algorithm 7: IsCovERED(G, p, b, C).

1
2
3
4

© 0w N o o

10
11
12
13

Input: Graph G, Block b, parent p, covered block set C
Output: true if covered by parent, else false

Q<+ [V];

visited = {b} ;

while Q!=0 do

b = Q.pop() ;
for ¢t e Child(G,b") do
if t = p then
‘ return true ;
else if t ¢ visited At ¢ C then
Q.add(t) ;
visited.add(t) ;
end
end
return false ;
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3.2 Optimization of Past(G,b) - Past(G,p)

We abbreviate the Past(G,b) - Past(G,p) to calculate BJ as GetDiffSet(G,b,C)
which is shown in the Algorithm[6] This algorithm is, in essence, a dual-direction
BFS algorithm. Starting from the block b, it will traverse all its referenced
blocks. Every time a new reference block b’ is discovered, it will perform a back-
ward BF'S to ‘look back’ to see if itself is already covered by the b’s parent block
p. If yes, b’ would not be added to the forward BF'S queue. To avoid the com-
plexity of the backward BF'S, we add the previously calculated diff set to the
covered set C', which will be passed to GetDiffSet() as a parameter. To be more
specific, when a backward BFS is performed, the blocks in C' will not be added
to the search queue. This backward search algorithm is denoted as IsCovered()
and described in detail in Algorithm [7]

Figure [7] shows the example of the GetDiffSet() method for block 5. It first
performs forward BFS to find block 4, which does not have children, then it will
be added to the diff set. 4, then move forward to 1, which has three children. If it
detects 3, which is the parent of 5, it will stop searching promptly. If it continues
searching on 2 or 4, these two blocks would not be added to the search queue,
because they are already in the covered set.

Fig. 7. Example of the streaming get diff set method.

3.3 Optimization of TopOrder()

The topological order is used in sorting the blocks in the same epoch. To get
the topological order, every time, there needs a top sort of the whole DAG from
scratch. However, we can easily update the topological order when a new block is
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added or merged. The update rule is when a new block is added; its topological
position will be as (1) shows. This step can be done in O(1)

TopScore(G,b) + min(TopScore(G, Parent(b)), TopScore(G, Reference(b)))+1
(2)

To summarize, the optimized streaming operators can achieve performance
improvement as Table [2] shows.

Table 2. Analysis of Graph properties calculation

Graph Property Algorithm used |Complexity|Tot

Score(G, b) MCMC() O(|B)) O(|B])
ParentScore(G, b) Pivot() O(|B)) O(|BJ)
Past(G,b) - Past(G,p) |StreamNetOrder() |O(|B|) O(|BJ)
TopOrder (G, b) StreamNetOrder()|O(|1]) o(|1])

3.4 Genesis Forwarding

The above algorithm solved the problem of how to dynamically maintaining the
information needed for graph computation. However, it still needs to update
the information until the genesis block. With the size of the graph growing,
the updating process will become harder to compute. With the growth of DAG
size, the old historical confirmed blocks are being confirmed by more and more
blocks, which are hard to be mutated. Furthermore, the exact probability can be
computed in formula (1). Hence, we can design a strategy to forward the genesis
periodically and fix the historical blocks into a total ordered chain. The criteria
to forward the genesis are based on the threshold of ParentScore(). Suppose we
define this threshold as h = n — m, then we only forward the genesis if:

3blb € Chain(G, g), forV' |V € Chain(G, g), suchthat ParentScore(b) > ParentScore(b')+h
3)

In Figure [8, we set h = 5, and there are three side chains with V'|V/ €
Chain(G, g), ParentScore(t/) <= 4. And in pivot chain, there are multiple
blocks b that has ParentScore(b) >=9, they are candidates for the new genesis,
we choose the block with minimum ParentScore as the new genesis.

Besides, after the new genesis has been chosen, we will induce a new DAG
in memory from this genesis; furthermore, persist the ‘snapshot’ total order
(Conflux paper has the same definition, but it does not show the technical detail,
we do not view it trivial) in the local database. Once the total order is queried,
a total order based on the current DAG will be appended to the end of the



16 Zhaoming Yin et al.

O h=5

9 @ Genesis candidates
@ Pivotal-chain blocks
(O Side-chain blocks

@ New genesis

Fig. 8. Example of genesis forward method.

historical snapshot total order and be returned. Also, the vertices in the UTXO
graph that belongs to the fixed blocks will be eliminated from the memory and
be persisted to disk as well. The algorithm is as Algorithm [8| shows.

3.5 The Direct Signal Gossip Protocol

There are solutions in [42] to minimize the message passing in the gossip network.
Moreover, in Hyperledger [44] they have adopted the PUSH and PULL model for
the gossip message propagation. However, their system is aiming at permissioned
chain. Suppose the size of the hash of a block is H, we designed the direct signal
algorithm. The algorithm is divided into two steps, once a node generates or
receives a block, it firstly broadcast the hash of the block, this is the PUSH step.
Once a node receives a hash or a set of a hash, it will pick one source of the hash
for the block content, and this is the PULL step. The direct signal algorithm’s
complexity will be O(LH 4+ NB) and for a node averaged to O(4 + 1) The
algorithm is as Algorithm [9] shows.
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Algorithm 8: Genesis Forward Algorithm.

Input: Graph G =< B,q,P, E >
while Node is running do

if 3b satisties (3) then

O = TopOrder(G, g);

g b

G’ « induceGraph(G,q’) ;
pS = ParentScore(G',g');
S = Score(G’,g");

O’ = TopOrder(G',g');
G+ G

persist O — O’ ;

sleep () ;

end

Algorithm 9: The Direct Signal Gossip Algorithm.

Input: Graph G =< B,gq,P,E >
while Node is running do

if Generate block b then
‘ Broadcast b to neighbors ;
if Receive block b then
h < Hash(b) ;
cachelh] < b ;
Broadcast h to neighbors ;
if Received request h from neighbor n then
b < cachelh] ;
Send b ton ;
if Received hash h from neighbor n then
b < cachelh] ;
if b= NULL then
‘ Send request h to n ;

end
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4 Experimental Results

4.1 Implementation

Signature:6561 Addr:243 Value:81

Obsolete_tag:81 Time_stamp:27 Current_idx:27 Last_idx:27

Not used in
Bundle:243 | Trunk:243 | Branch:243 | Tag:81 |:| StreamNet

Attach_TS:27 TS_lower_bound:27 TS_upper_bound:27 Nonce:81

Fig. 9. Block header format, the main transaction information is stored in the sig-
nature part. The addr is sender’s address, the timestamp is the time the block has
been created, current/last index and the bundle is used for storing the bundle informa-
tion, trunk and branch are the hash address to store the parent and reference location,
the tag is used for store some tagging information, addtach_TS is when the block is
attached to the StreamNet, the nonce is used in POW calculation.

We have implemented the StreamNet based on the IOTA JAVA reference
code (IRI) v1.5.5 [45]. We forked the code and made our implementation; the
code is freely available at [46]. In this paper, we use version v0.1.4-streamnet in
the v0.1-streamnet beta branch.

— The features we have adopted from the IRI are:

e The block header format, as shown in Figure [9}] Some of the data seg-
ments are not used in StreamNet, which are marked grey.

e Gossip network, the network is a bi-directional network in which every
node will send and receive data from its peers;

e Transaction bundle, because of the existence of the bundle hash fea-
ture, StreamNet can support both the single transaction for a block and
batched transactions as a bundle.

e Sponge hash functions, which is claimed to be quantum immune, in our
experiment, the POW hardness is set to 8, which is the same as the
testnet for IOTA.

— The features we have abandoned from the IRI are:

e The iota’s transaction logic including the ledger validation part;

e The milestone issued by coordinators, which is a centralized setup.
— The features we have modified based on the IRI is:

e The tip selection method based on MCMC, since the tip selection on IRI
has to find a milestone to start searching, we replace this with a block
in the pivotal chain instead.
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— The features we have added into the StreamNet are:

e The consensus algorithms, and we have applied the streaming method
directly in the algorithms;

e The UTXO logic stored in the signature part of the block header used
the graph data structure to store UTXO as well.

e In IOTA’s implementation, the blocks are stored in the RocksDB [47] as
the persistence layer, which makes it inefficient to infer the relationships
between blocks and calculate graph features. In our implementation,
we introduced an in-memory layer to store the relationships between
blocks, such that the tip selection and total ordering algorithm will be
accelerated.

4.2 Environment Set Up

—
N

w
—
—
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/
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Fig.10. Cluster set up for different network topologies.

We have used the AWS cloud services with 7 virtual machines, for each node,
it includes a four-core AMD EPYC 7571, with 16 Gb of memory size and 296Gb
of disk size. The JAVA version is 1.8, we have deployed our service using docker,
and the docker version is 18.02.0-ce.

We have 7 topologies set up of nodes, which are shown in Figure these
configurations are aiming to test:

— The performance when the cluster connectivity is high (congestion of com-
munications, like 3-clique, 4-clique, 7-clique, and 7-star);

— The performance when the cluster diameter is high (long hops to pass the
message, like 4-circle, 7-circle, 7-bridge);
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As for the data, we have created 1,000 accounts, with the genesis account
having 1,000,000,000 tokens in the coinbase block. We divided the accounts into
two groups (each group will have 500 accounts), the first group will participate
in the ramp-up step, which means the genesis account will distribute the tokens
to these accounts. Moreover, for comparison, we have issued four sets of different
size transactions (5000, 10000, 15000, and 20000), respectively. In the execution
step, the first group of accounts will issue transactions to the second group of
accounts, which constructs a bipartite spending graph. Since there are more
transactions than the number of accounts, there will be double-spend manners
in this step. The number of threads in this procedure is equal to the number
of nodes for each configuration. Jmeter [48] is utilized as the driver to issue
the transactions, and Nginx [49] is used to evenly and randomly distribute the
requests to different nodes.

4.3 Results and Discussions

Block generation rate test To test the block generation rate, we set each
block in StreamNet to have only one transaction. Furthermore, the performance
on this configuration is as Figure [[T]shows. First, as the size of the cluster grows,
the network will witness little performance loss on all of the data scales. In the
experiment, we can also see that with the growth of the data, the average TPS
on most of the configurations have grown a little bit (some outliers need our time
to triage), this is because the genesis forwarding algorithm needs some ramp-up
time to get to the stable growth stage. Considering the system is dealing with
a growing graph instead of a chain and the complexity analysis in the previous
section, the experiment clearly shows that our streaming algorithm sheds light
on how to deal with the growing DAG.

Bundle transaction test By default, each block in StreamNet will support
bundle transactions. We set each bundle to contain 20 transactions, and for each
block, there are approximately 3 transactions included. The performance on this
configuration is as Figure [12| shows. In this experiment, we can see that the per-
formance (TPS) comparing with the block test improved more than twice. This
is because there will be less POW works to be done. Besides, with the growth
of the data, we do not witness a noticeable performance downturn. Neverthe-
less, there are some performance thrashing in the experiment, which needs more
study.

5 Conclusion

In this paper, we proposed a way to compute how to grow the blocks in the
growing DAG based blockchain systems. And how to maintain the total order as
the DAG structure is dynamically turning larger. We referred one of the earliest
DAG implementation IRI to conduct our own experiments on clusters of different
size and topology. Despite the network inefficiency in the IRI implementation,
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Fig. 11. Experimental results for block generation rate.

our method is proven to be able to tolerate the increasing complexity of the graph
computation problems involved. This is due to the streaming graph computing
techniques we have introduced in this paper.
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